SMR. Просто о сложном

Типичный представитель дисков с технологией SMR — Seagate Mobile HDD

Вместо предисловия

Когда-то давно (относительно, конечно) в индустрии производства накопителей на жестких магнитных дисках настал переломный момент: для того, чтобы увеличить емкость выпускаемых дисков, производители перешли от параллельной магнитной записи к записи перпендикулярной. Технология появилась 12 лет назад и ее единственной задачей было продлить век жесткого диска, сделать его конкурентноспособным за счет увеличения емкости и уменьшения цены. Надо сказать, что с задачей технология справилась на славу: емкость жестких дисков за эти годы выросла почти в 10 раз, а цена упала до смешного: за 1 Тбайт дискового пространства нынче просят меньше 50 долларов США.

Однако и технологии NAND, на которых строятся твердотельные диски, не стояли на месте. Появились ёмкие SSD (100 Тбайт) с очень высокой производительностью. Жесткие диски оказались позади аж по целым двум показателям: по емкости (потолок того, что можно сейчас купить на рынке — 18 Тбайт; производители обещают в скором времени диски емкостью 20 Тбайт, но по сравнению со 100 Тбайт это звучит, мягко говоря, не очень оптимистично) и по производительности (современный жесткий диск ограничен пропускной способностью интерфейса SATA или SAS, тогда как твердотельные диски последних поколений работают на скоростях шины PCI Express).

Единственный (и, надо сказать, пока еще определяющий выбор покупателя) плюс жестких дисков — их цена. Накопитель HDD на 1 Тбайт стоит в 3 — 5 раз дешевле твердотельного диска той же емкости, ну а повышение емкости SSD кратно одному Тбайту повышает его цену в некоторых случаях на порядок.

За то время, что развивалась технология перпендикулярной записи, ее возможности были практически исчерпаны, и перед производителем встала новая задача: как продолжать наращивать емкость? Для этого существует три пути: уменьшить толщину магнитных пластин и, как следствие, сделать возможным установить их в гермоблок жесткого диска больше (при этом по очевидным причинам страдает надежность); уменьшить величину записываемого участка (увеличить плотность на треке) и сделать возможным записать больше данных на трек (развиваются две технологии — MAMR и HAMR); изменить метод записи для более плотного расположения непосредственно треков. Вот об этом, последнем, пути увеличения емкости мы и поговорим.

Производители ведут разработки, естественно, во всех направлениях. Одним из революционных изобретений последних лет стала технология SMR — Shingled Magnetic Recording, черепичная магнитная запись. Про нее эта статья.

Что такое SMR

Черепичная запись — принцип организации записи треков так, чтобы они частично перекрывались. Соответственно, упаковка треков в этом случае максимальная — фактически они лежат так плотно, что головка чтения-записи уже не может работать с каким-то одним треком, ей приходится работать сразу с несколькими. Это заметно увеличивает скорость чтения и записи (пишем-то сразу несколько треков, как и читаем), но только в том случае, если запись или чтение производится последовательно. Если нам нужно работать с большим количеством мелких файлов, а тем более — начать перезапись данных внутри уже имеющихся (например, удалить один маленький файл и записать на его место другой), скорость записи и чтения может проваливаться всерьез и надолго — вплоть до значений, близких к единичным IOPS на несколько минут.

Схема упаковки треков при PMR-записи
Схема упаковки треков при SMR-записи

На рисунках выше мы показали разницу между PMR (причем не важно, параллельной или перпендикулярной) и SMR записью.

Как видим, писать-читать SMR-головки могут только порциями треков, причем довольно солидными, на ширину головки. Эти порции треков называются лентами (ленты могут быть и шире однократного прохода головки, но всегда кратны ему). Если старый добрый жесткий диск с PMR-записью оперировал треками, то новый, с записью SMR, оперирует уже лентами (хотя треками, естественно, оперировать он тоже умеет — но об этом ниже).

Как работает SMR-диск

Давайте представим, как это работает. Пользователь решил записать на SMR-диск какой-то файл. Система передала его на интерфейс, из которого он загрузился в буфер диска. Здесь уже логика жесткого диска определила, на какую ленту (или на какие ленты) этот файл положить. Если лента до этого была пустая — прекрасно, значит просто кладем туда данные, и дело в шляпе. А вот если там уже что-то лежало, то диску предстоит целый набор нетривиальных действий: считать то, что уже лежит на ленте; загрузить считанное в буфер; объединить с тем, что добавляется на ленту; положить весь кусок (старое и новое) туда, куда требуется. Если же укладываются не последовательно большие порции данных, то процесс может реально занимать немало времени — именно поэтому у SMR-дисков большой объем буферного ОЗУ. Хоть как-то процесс ускорить.

При последовательной записи картина обратная. На скриншоте ниже показана запись 2 Тбайт данных на SMR-диск с интерфейсом USB 3.0 производства Western Digital емкостью 4 Тбайт. Как видим, скорость весьма приличная, хотя и не максимальная. Если бы пересылались большие файлы (в нашем примере идет передача огромного количества фотографий), скорость записи была бы еще больше.

Копирование 2 ТБайт данных на внешний накопитель (SMR, 4 Tбайт, Western Digital) с интерфейсом USB 3.0

Возникает вопрос: а как тогда работает такой диск, если требуется многократная перезапись небольших файлов в разных местах диска, ведь получается, что диску предстоит перелопатить кучу лент и это, естественно, займет немало времени?

Да, это сложная задача, с которой программисты прошивок SMR-дисков постарались справиться двумя способами. Первый — это наличие у диска стандартных PMR-областей, а второй — введение в микропрограмму фоновых процессов реорганизации лент, сходных с обычной дефрагментацией (собственно, в микропрограмме она так и называется — фоновая дефрагментация).

PMR-области используются в тех случаях, когда буферное ОЗУ переполняется, и требуется быстро освободить его под новые очереди задач; также эти области используются для процессов фоновой дефрагментации.

Фоновая дефрагментация: корень всех зол или благо?

Теперь немного подробнее о самой дефрагментации. В те моменты, когда SMR-диск не имеет задач от операционной системы, микропрограмма автоматически запускает процессы реорганизации лент. Диск сканирует ленты, определяет, где данные следует перенести для оптимизации скорости чтения, и производит перенос: считывается вся лента (или несколько лент), выкладывается в буфер (и дублируется на другой части диска, в SMR- или PMR-области), затем данные переставляются в нужном порядке, лишнее удаляется, и лента (или ленты) кладется обратно. И так в цикле, пока не будет реорганизован весь массив данных.

Соответственно, чем больше на диске данных (и чем больше их было записано недавно и, соответственно, беспорядочно), тем больше диску требуется времени на фоновую дефрагментацию. Поскольку довольно часто сейчас SMR-диски используются во внешних накопителях, может возникнуть ситуация, когда ваш внешний диск начинает жутко «тормозить». Если при этом он не издает посторонних звуков, не был замечен в падениях или ударах и является относительно свежекупленным, мы рекомендуем подождать. Почти наверняка в нем идут фоновые процессы реорганизации информации, и через некоторое время диск завершит их и перейдет в нормальный режим работы. Если же вы будете пытаться в это время записать в него новые данные, то это просто приведет к значительной потере времени: данные вы, конечно, запишете. Но заметно дольше, чем могли бы.

Логика работы SMR-дисков. Двойной транслятор, шифрование и TRIM

Логика SMR-диска устроена по-другому, не как PMR-диск. Если в стандартных PMR-дисках имеется только одна система трансляции (физическая адресация сектор — трек — головка в логическую адресацию LBA), то у SMR-дисков систем трансляции две. Это классический транслятор «сектор — трек -головка в LBA» и новый транслятор «сектор — трек — головка в ленте», причем оба этих транслятора взаимосвязаны. Потеря любого из них приведет к полной потере данных (на этом, кстати, построены технологии «быстрого стирания» SMR-дисков — обнуляем один из трансляторов и все, данных нет). Восстановление будет возможно лишь в том случае, если получится восстановить утерянный транслятор. Это уже задача для компаний по восстановлению информации, на текущий момент — достаточно сложная и дорогостоящая.

Кроме того, не стоит забывать и про шифрование. Оно уже давно и прочно обосновалось в устройствах хранения информации — ну а в SMR-дисках его использование время от времени преподносит пользователям своеобразные и далеко не всегда приятные сюрпризы.

Третья особенность SMR-дисков — TRIM. Гораздо проще и быстрее не перестраивать структуру лент, если это не требуется, а менять транслятор: удалили данные — ленты помечаются как пустые, и, соответственно, при запросе данных возвращают заполненные нулями сектора. Это, с одной стороны, удобно. А с другой — даже простой логический заказ (удаленные данные) после отработки TRIM может оказаться уже сложным, с необходимостью поднимать транслятор диска и извлекать данные из помеченных как очищенные лент. Поэтому прежде чем удалять информацию с SMR-диска — убедитесь, что эти данные вам больше не нужны. Иначе можно серьезно пострадать.

И как все это использовать?

Вполне закономерный вопрос, между прочим. Если вы дочитали до этого места, то уже поняли: SMR-диски очевидно лучше использовать под определенные задачи — по крайней мере, пока технология не обкатается и не будут решены описанные выше сложности. Ведь не спроста производители вдруг начали делить диски по типу использования: Survellance (для систем видеонаблюдения, то есть — для непрерывной потоковой записи), NAS (для дисковых массивов, то есть — для постоянной случайной записи и чтения), Gaming (для игр, то есть — для быстрого чтения больших объемов данных и предчтения их в буфер), Computing (для обычных персональных компьютеров, то есть — для стандартного повседневного использования).

Выбирая диск, обращайте внимание на его назначение, и покупайте именно такой, который максимально отвечает планируемому его использованию. Микропрограммы и физическая организация дисков могут оказаться (и обычно оказываются) оптимизированы под целевое использование, и диск для систем видеонаблюдения может оказаться совсем не подходящим для использования в бытовом компьютере.

В целом можно констатировать, что на текущий момент наиболее оптимально использовать SMR-диски в задачах, где производится последовательная запись и стирание данных — особенно больших объемов. С такими задачами в силу механизмов функционирования эти диски будут справляться намного лучше и быстрее PMR-дисков. Например, диски в системах видеонаблюдения, архивирования данных (системы резервного копирования, которые записывают резервную копию в виде одного файла), внешние накопители для хранения информации, и т.п. SMR-диски нежелательно использовать под установку операционной системы, под работу ПО (особенно, связанную с многочисленными постоянными переносами данных — например, в системах видеомонтажа или верстки документов типографского качества) и пр. Для этих задач мы рекомендуем или SSD, или HDD в традиционном PMR-исполнении.

Поделитесь и поставьте лайк, если Вам понравилось:

SSD. Время перемен. Часть 3. Модернизируем настольный компьютер

Введение

В предыдущих частях этой статьи (первая посвящена общему анализу технологии, вторая — практическим примерам модернизации мобильных компьютеров) мы рассмотрели теоретические и некоторые практические вопросы применения твердотельных дисков. В этой, заключительной, части статьи мы рассмотрим вопросы практического применения SSD для настольных компьютеров.

Применение твердотельных дисков, в отличие от мобильных ПК, для настольных компьютеров до сих пор не является стандартом. Исключение составляют только некоторые продукты корпорации Apple (Apple iMac), оборудованные и SSD, и HDD. Эта связка в таких устройствах объединяется в своеобразный дисковый массив, называемый fusion drive. С одной стороны, использование такого массива заметно повышает производительность дисковой подсистемы iMac. С другой стороны, выход из строя любого элемента fusion drive приведет к отказу системы целиком.

Однако мы не будем касаться современных решений использования SSD в настольных компьютерах, а поговорим о модернизации.

Понятное дело, если на материнской плате компьютера имеется разъем M.2, который используется для подключения высокоскоростных SSD, все становится весьма просто: устанавливаем в этот разъем твердотельный диск, и все. Модернизация завершена.

Ну а если такого разъема нет? Действительно, большинство материнских плат компьютеров, купленных до 2018 года, такого разъема не имеет; да и для современных материнских плат это пока еще вовсе не широко распространенный стандарт. А высоких скоростей хочется. Как быть?

Ничего сложного. Более того: для модернизации настольного компьютера с использованием SSD у нас имеется два принципиально разных пути: использовать SATA SSD или использовать PCIe SSD.

Используем SATA SSD. Asrock G41M-VS3

SATA SSD мы будем использовать в том случае, когда материнская плата не поддерживает загрузки с PCIe-устройств — то есть для достаточно старых компьютеров. Основное требование при модернизации таких машин — дешевизна, так как суммарная стоимость установленных в них комплектующих может не превышать стоимости SSD, необходимого для модернизации.

С учетом того, что требуется максимальная дешевизна модернизации, будем использовать твердотельный диск минимального, но оптимального объема 128 Гбайт. Наш выбор пал на SSD Samsung Thin 128 GB mSATA MLC. Этот диск можно купить по цене 30 — 35 долларов США; переходник с mSATA на стандартный SATA будет стоить примерно 3 доллара. Таким образом, в самом неблагоприятном случае стоимость модернизации составит всего 40 долларов США.

SSD Samsung 128 GB для модернизации настольного ПК

Конфигурация ПК перед модернизацией: процессор Intel Core 2 Quad Q6600 (2,4 GHz), ОЗУ 4 Гбайт DDR3, жесткий диск 320 Гбайт Seagate Barracuda 7200.10. Видеокарта: интегрированная в чипсет. Первоначальая скорость загрузки операционной системы (Windows 8.1) составляет 52 секунды, скорость загрузки ПО Adobe Photoshop CC — 27 секунд.

После установки SSD мы получили: скорость загрузки операционной системы 14 секунд, скорость запуска ПО Adobe Photoshop CC — 9 секунд. Прирост производительности почти в 4 раза. Для настольного компьютера, для которого потолок производительности при замене процессора и установке максимального количества ОЗУ составит не более 30%, это совсем не плохой результат. Заметим попутно — результат за 40 долларов США.

Примечание. Перед тем, как использовать ваш новый SSD, включите в BIOS компьютера интерфейс AHCI, иначе прироста производительности, который получен нами, не будет.

Используем M.2 SSD. ASUS H110M-R

В тех случаях, когда в BIOS материнской платы имеется поддержка загрузки с устройств PCIe, имеет смысл (причем как в ключе увеличения производительности, так и в ключе стоимости модернизации) установить M.2 SSD в разъем PCIe. Это потребует несколько больших расходов, чем в предыдущем случае, но результатом вы точно не разочаруетесь.

Материнская плата ASUS H110M-R, конфигурация компьютера: процессор Core i5-7400 3 ГГц, 16 Гбайт ОЗУ двумя планками по 8 Гбайт (DDR4) и HDD 1 TB Seagate Barracuda. Видеоподсистема: интегрированная в чипсет графика.

SSD и M.2 — PCIe адаптер, используемые для модернизации ПК на базе материнской платы ASUS

Зарузка Windows 8.1: 43 секунды, запуск приложения Adobe Photoshop CC: 18 секунд.

Что нам потребуется? Непосредственно сам твердотельный диск и адаптер для его подключения на шину PCIe. Причем с адаптерами возникает довольно приятная ситуация: на рынке их довольно много, цена варьирует от 4 до 12 долларов США. Выбирать адаптер следует не по производителю, а по поддерживаемой скорости PCIe. Скажем, если на материнской плате вашего компьютера установлены PCIe разъемы х4, то смысла покупать более дорогие переходники на х16 нет. Конечно, они будут прекрасно работать и на х4, но стоить они будут заметно (минимум в 2 раза) дороже.

Теперь будем выбирать SSD. Тут все зависит от того, на какой бюджет вы рассчитываете. Для настольного ПК комбинация «SSD под систему, HDD под данные» является оптимальной, поэтому в большинстве случаев должно хватить твердотельного диска объемом 120 — 128 Гбайт (цена варьирует от 30 до 35 долларов США). Если вы любите время от времени поиграть в какие-то более-менее ресурсоемкие игры (например, шутеры), то лучше установить SSD побольше — 240 — 256 Гбайт (стоимость 40 — 50 долларов США). Как видите, цена отличается не слишком сильно. Однако имейте ввиду, что цены указаны для так называемых «средних» производителей — Kingston и ADATA. Если вы захотите что-то более «брендовое», например Samsung, то за M.2 SSD емкостью 128 Гбайт придется заплатить 80 долларов, а 256 Гбайт обойдется уже в 120.

Для нашего апгрейда мы выбрали SSD ADATA XPG SX6000 емкостью 256 Гбайт и ценой 49 долларов США и адптер-переходник PCIe — M.2 NGFF за 7 долларов США (на Aliexpress такой можно купить и за 5). Кстати, аббревиатура NGFF, часто встречающаяся как расширение М.2, на самом деле является синонимом этого интерфейса и буквально означает Next Generation Form Factor (форм-фактор следующего поколения).

Общая сумма модернизации: 56 долларов США. Теперь посмотрим, с какой скоростью работает машина.

Загрузка Windows 8.1 — 12 секунд. Запуск приложения Adobe Photoshop CC — также 8 секунд. Прирост производительности в 3 — 4 раза, и это для относительно свежего компьютера.

Выводы

Как результат описанных здесь и во второй части этой статьи модернизаций можно уверенно сделать три вывода.

Вывод первый. При соблюдении определенных условий модернизация компьютера с использованием SSD может привести к повышению производительности до 4 — 5 раз.

Вывод второй. Стоимость модернизации компьютера для достижения производительности в 4 — 5 раз превышающей исходную, обычно не превышает 100 долларов США.

Вывод третий, он же основной. Как нам думается, пришло время для перевода компьютеров с основного загрузочного устройства HDD на SSD. Соотношение «стоимость модернизации/прирост производительности» значительно лучше, чем раньше, когда для достижения более-менее приемлемого и видимого глазу результата требовалась замена едва ли не всех комплектующих.

Поделитесь и поставьте лайк, если Вам понравилось:

Seagate анонсировала начало отгрузки дисков 20 ТБ в 2020 году, и 50 ТБ в 2026: мечты или реальность?

Год назад, 2 ноября 2018 года, на презентации в Лондоне (Tech Live Event) компания Seagate анонсировала развитие двух своих технологий: HAMR (Heat-Assisted Magnetic Recording: термо-магнитная запись; при записи данных участок поверхности локально нагревается до примерно 450 градусов Цельсия, что позволяет произвести запись более точечно, тем самым увеличив плотность записи) и MACH.2 (двойной актуатор; в теории позволяет в два раза увеличить производительность устройства за счет наличия в гермоблоке двух независимых актуаторов; в перспективе предполагается использовать больше двух актуаторов (multi-actuator)) уже не в виде опытных образцов, а в виде промышленных продуктов.

На слайдах с этой презентации, мгновенно просочившихся в Сеть, показан довольно любопытный график: планы Seagate по производству и отгрузке жестких дисков определенной емкости и технологии.

Фрагмент презентации компании Seagate о перспективах и планах по производству жестких дисков с технологией HAMR

Как видно из этого графика, планы компании Seagate пока сбываются: на текущий момент купить диск емкостью 16 Тбайт не представляет сложности. Ниже вы можете просмотреть презентационное видео о технологии HAMR (на английском языке).

Другая ипостась производства дисков высокой емкости — использование технологии MACH.2, относительно которой Seagate на упомянутой выше презентации представляла следующее:

Планы Seagate о производстве мультиактуаторных дисков (слайд из презентации на Tech Live Event в Лондоне)

Как мы видим из приведенного графика, производство первого поколения мультиактуаторных дисков (емкость 14 ТБайт) была намечена на текущий год.

Начнем с MACH.2. Не смотря на анонсы, массового производства этих дисков пока не наблюдается. Возможно, они появятся в ноябре (который, к слову, скоро уже перевалит за половину), или в декабре; но скорее всего, мы увидим их выпуск в следующем, 2020, году. Чтож, подождем.

Гораздо интереснее нам видится вопрос с увеличением емкости. Согласно первому графику, в 2019 году мы должны были увидеть в продаже жесткие диски емкостью 16 Тбайт. И действительно, такие диски можно легко купить в большинстве компьютерных магазинов — например, в российском интернет-магазине DNS.

Начало продаж дисков емкостью 18 Тбайт, построенных на архитектуре HAMR, ожидается в первой половине следующего года, а диски емкостью 20 Тбайт должны появиться уже во второй половине 2020. Эти планы выглядят гораздо более реалистичными, чем начало продаж дисков с двойными актуаторами хотя бы потому, что диски емкостью 16 Тбайт в продаже уже минимум полгода.

Известен закон увеличения емкости жестких дисков: ежегодно прирост емкости составляет от 40 до 60%. То есть, даже если предположить 40%-ный прирост емкости ежегодно, то есть движение по самому пессимистичному сценарию, в 2020 году относительно сегодняшних 16 ТБайт емкость дисков должна увеличиться минимум на 6 Тбайт, то есть предел, которого достигнут жесткие диски к концу 2020 года, теоретически составит 22 Тбайта. На этом фоне заявление корпорации Seagate о начале отгрузок 20-терабайтных монстров во второй половине 2020 года выглядит более чем реально.

Давайте примерим этот же алгоритм на 2026 год и подумаем, сбудется ли прогноз о дисках емкостью 50 Тбайт (заметим, что твердотельные диски емкостью 100 Тбайт уже давно есть в продаже, правда стоимость их не внушает оптимизма). Итак, 2020 год — максимальная емкость НЖМД составит 20 ТБ. Соответственно, в 2021 году — 28, в 2022 — около 40, а уже в 2023 — 50 и выше. Очевидно, корпорация Seagate не питает иллюзий в плане увеличения емкости своих изделий и берет пару лет на раскачку. Чтож, это разумно.

Какие выводы можно сделать из всего, сказанного выше? Нас еще очень долго ждет неравная борьба между SSD и HDD, и HDD в этой борьбе вовсе не будут сдаваться. Думаю, что мы еще увидим жесткие диски емкостью 100 Тбайт — и будут они намного дешевле, чем аналогичные SSD.

Заметим, что другой гигант индустрии устройств для хранения данных, Western Digital, анонсировал, что диски емкостью 20 Тбайт будут выпущены им еще до конца 2020 года. Toshiba тоже самое обещает про диски емкостью 18 Тбайт. Гиганты наступают друг другу на пятки, а мы запасаемся попкорном и ожидаем, кто же в итоге первым перешагнет порог в 50 Тбайт.

Поделитесь и поставьте лайк, если Вам понравилось:

SSD. Время перемен. Часть 2. Модернизируем ноутбук

В первой части этой статьи мы поговорили о том, какими положительными и отрицательными качествами обладают твердотельные диски, и пришли к выводу, что эти диски, не смотря на все еще относительно высокую цену, являются достойной заменой жестким дискам.

Во второй части этой статьи мы предлагаем конкретные примеры модернизации компьютеров с использованием SSD. Это наш личный опыт, поэтому рекомендации не являются голым теоретизированием, а подкреплены практикой.

Итак, поехали.

Lenovo B570e

Ноутбук, скажем так, далеко не первой свежести. Исходная конфигурация: HDD 1 TB Hitachi, ОЗУ 2 Гбайт DDR3, процессор Core i3-2350M 2,3 GHz; видеоподсистема представлена двумя графическими ядрами: встроенное в чипсет Intel HM65, а также «внешняя» видеокарта NVidia N12M (1 Гбайт памяти). Возраст устройства: около 10 лет.

Как мы можем видеть из приведенной конфигурации, у этого мобильного компьютера имеется три слабых места: процессор, ОЗУ и жесткий диск. Предустановленная операционная система (Windows 7 Home) в оригинальной конфигурации загружается 44 секунды. Для открытия ресурсоемкого приложения Adobe Photoshop CC требуется 32 секунды. Компьютер можно охарактеризовать одним словом: тормоз.

Lenovo B570E: заменяемые узлы

C учетом того, что материнская плата ноутбука не поддерживает процессоры старше Core i5-2520, не сильно отличающийся от установленного Core i3-2350 (фактически отличия лишь в том, что процессор пятого поколения может быть сильнее разогнан, чем процессор третьего; ну и, естественно, другой производственный процесс), модернизировать процессор не требуется.

Таким образом, требуется замена жесткого диска на твердотельный и наращивание ОЗУ. Владелец ноутбука очень требователен к количеству свободного места на своих дисках — твердотельный диск необходимой емкости превышает по стоимости сам ноутбук, поэтому в дисковую подсистему было принято решение добавить дополнительный жесткий диск, подключенный вместо оптического привода.

Модули памяти для ноутбука Lenovo B570e, общий объем 16 Гбайт

Итак, что у нас получилось. Вместо модуля памяти SODIMM DDR3 2 GB было установлено 2 модуля памяти SODIMM DDR3 8 GB, суммарный объем ОЗУ увеличен с 2 Гбайт до 16. Стоимость двух модулей памяти составила 60 долларов США.

Вместо жесткого диска HDD Hitachi 1 TB был установлен SSD ADATA SU-800 емкостью 512 Гбайт; вместо оптиеского привода был установлен second caddy, в который смонтирован жесткий диск Seagate Mobile HDD емкостью 2 Тбайт. Суммарная емкость дисковой подсистемы увеличена с 1 Тбайт до 2,5 Тбайт. Стоимость составила: SSD — 65 долларов США, second caddy — 9 долларов США, HDD — 80 долларов США. Итоговая сумма, потребовавшаяся на модернизацию устройства: 214 долларов США.

Second caddy и диск Seagate Mobile HDD 2 TB, установленные в ноутбук Lenovo B570e.

Довольно солидная сумма, но то мы в итоге получили?

Загрузка операционной системы Windows 7 Home: 5 секунд (против 44 в исходной конфигурации). Загрузка ПО Adobe Photoshop CC: 3 секунды (против 32 в исходной конфигурации). Прирост производительности, как мы видим, примерно в 10 (ДЕСЯТЬ!!!) раз.

Стоит ли такой прирост производительности этих расходов? Бесспорно. Работа без тормозов на этом ноутбуке теперь совершенно точно обеспечена.

HP Pavilion 15-e057sr

Также, как и предыдущий пример — довольно старый ноутбук, произведен в 2015 году. Конфигурация несколько лучше, чем у предыдущего: HDD 1 TB Samsung, ОЗУ 6 Гбайт DDR3, процессор Core i5-3230M 2,6 GHz; видеоподсистема представлена двумя графическими ядрами: встроенное в чипсет Intel HM76, а также «внешняя» видеокарта AMD Radeon HD 8670M (1 Гбайт памяти).

Очевидно, что с процессором в данном устройстве пока еще все более-менее хорошо; объем ОЗУ также вполне удовлетворительный. Однако скорость загрузки операционной системы (Windows 8.1 x64 Professional) составляет 29 секунд, а скорость запуска приложения Adobe Photoshop CC — 20 секунд. Результаты намного лучше, чем в исходной конфигурации предыдущего устройства, однако, как мы понимаем, могут быть заметно улучшены.

Модернизируемые узлы ноутбука HP Pavilion 15-e57sr

Принято решение модернизировать объем ОЗУ (в этом ноутбуке ОЗУ организовано в виде двух слотов SODIMM DDR3; в заводской конфигурации поставляется с двумя предустановленными планками SODIMM: 4 GB и 2 GB). Вместо планки на 2 Гбайт мы установим планку 4 Гбайт. Большого прироста производительности это не даст, но все же…

Жесткий диск будет меняться на SSD Samsung 850 EVO емкостью 256 Гбайт. Для устройства не требуется большой объем дискового пространства, поэтому данный объем является оптимальным и для функционирования операционной системы и установленных приложений, и для хранения некоторого объема необходимых данных (после установки ОС и ПО на диске остается не менее 150 Гбайт свободного места, которое можно использовать).

Модули SODIMM DDR3 для ноутбука HP Pavilion 15-e057sr

Итоговая сумма за модернизацию: SODIMM DDR3 4 GB — 30 долларов США, SSD — 70 долларов США; вся модернизация обошлась в 100 долларов США. Насколько мы выиграли при этом в производительности?

Загрузка операционной системы — 5 секунд. Загрузка ПО Adobe Photoshop CC — 3 секунды. Среднее увеличение производительности относительно исходной конфигурации минимум в 5 раз — солидный показатель, не так ли? За 100 долларов США получить компьютер в 5 раз быстрее старого — это более чем приятно.

Выводы

Очевидно, что самый главный вывод из этого материала будет очень простым: замена НЖМД на SSD в мобильном компьютере приводит к увеличению его производительности в разы, а если заменить не только жесткий диск, но еще и нарастить ОЗУ, то производительность может увеличиться на порядок.

Очевидно, что такой прирост производительности стоит всех вложенных в него денег до последнего цента.

Второй вывод: настало время для модернизаций. Стоимость SSD заметно снизилась, и теперь ваше до этого довольно медлительное устройство на жестком диске может обрести высокую скорость работы, при этом объем инвестиций не будет критически большим.

Рекомендации

Для того, чтобы провести модернизацию вашего ноутбука, вам нужно знать его характеристики: какой тип накопителя в нем установлен, поддерживает ли BIOS компьютера интерфейс AHCI (одна из важнейших характеристик интерфейса AHCI — MultiQueue, или многопоточная очередь задач, позволяющая использовать SSD в несколько потоков — за счет чего, собственно, и увеличивается производительность), какая в нем стоит ОЗУ, и пр. Если вы не уверены в том, что обладаете корректной информацией — вы всегда можете уточнить ее на сайте производителя или позвонить нам для бесплатной консультации.

Как вы уже поняли, для того, чтобы SSD функционировал на полную мощность, AHCI должен быть включен. Это легко можно сделать в BIOS устройства.

Наконец, последняя рекомендация. Если вы держите на своем ноутбуке важную информацию, приобретите внешний накопитель для резервного копирования или настройте облако (с теми же целями). А в идеале пусть у вас будет и то, и другое.

Следите за новостями — скоро будет опубликована третья часть этой статьи, в которой мы расскажем о том, как модернизировать настольный компьютер.

Поделитесь и поставьте лайк, если Вам понравилось:

SSD. Время перемен. Часть 1. Преимущества и недостатки

Чуть больше 10 лет назад, когда первые твердотельные диски (SSD: solid state drive) появились в массовом использовании (сначала в 2007 году в нетбуке Asus EEE PC-701, а затем в 2008 году корейская компания Mtron Storage Technology выпускает SSD уже как отдельное устройство), им прочили великое будущее. И, как мы можем видеть сейчас, не ошиблись.

Преимущества SSD

Как устройства хранения информации (или, по классической схеме компьютера фон Неймана, запоминающее устройство (память)), твердотельные диски обладают перед жесткими дисками (HDD — hard disk drive) рядом преимуществ, а именно: высокая производительность, высокая устойчивость к физическим воздействиям, бесшумность, низкое энергопотребление и, соответственно, небольшой нагрев во время работы.

Высокая производительность.

Узкое место любого жесткого диска — система считывания и записи информации. Это головка чтения-записи. Увеличение производительности этой подсистемы возможно тремя способами: уменьшение времени поиска (или времени позиционирования на треке/секторе) программными и аппаратными средствами; увеличение скорости вращения шпиндельного двигателя для уменьшения времени поиска; установка нескольких независимых актуаторов для того, чтобы в процессе поиска данных участвовала не одна, а несколько головок. Первые два способа повышения производительности жесткого диска фактически исчерпаны, третий — пока находится на стадии разработок и тестирования; хотя он был анонсирован довольно давно, коммерческих моделей жестких дисков с двойным актуатором в продаже пока не появилось.

Таким образом, производительность жесткого диска ограничена пропускной способностью и производительностью головок чтения-записи, практически уже достигшей предела.

Твердотельные диски, в отличие от жестких, не имеют таких ограничений. Доступ к данным может быть организован (и организуется) в несколько независимых потоков. Фактически для SSD в SATA-исполнении верхней границей производительности является максимальная пропускная способность SATA-интерфейса (для SATA-3 это 6000 Mbit/s), для SSD, подключаемых на шину PCI Express — это максимальная пропускная способность PCIe (для наиболее распространенного на текущий момент PCIe x4 — 7,88 Гбайт/с; для наиболее быстрого на данный момент PCIe x16 — 63 Гбайт/с). Это совершенно фантастчиеские цифры для дисковой подсистемы.

Высокая устойчивость к физическим воздействиям

Жесткие диски — достаточно хрупкие устройства. Очень часто достаточно небольшого физического воздействия (легкий удар, падение с небольшой высоты и т.п.), чтобы жесткий диск перестал нормально функционировать. Более того — в результате такого воздействия можно полностью потерять доступ к данным, довольно часто — необратимо. Причина — выход из строя магнитных головок и/или повреждение поверхности. Продаваемые сейчас в массе внешние жесткие диски на базе 2.5-дюймовых НЖМД, хотя и позиционируются как противоударные, также не лишены этого недостатка.

Твердотельный диск, поскольку не имеет в своей конструкции движущихся частей, может выдерживать серьезные физические воздействия. Это послужило основанием для того, чтобы заменить в «черных ящиках» самолетов магнитную ленту или проволоку на SSD-диски. Таким образом, твердотельному диску не страшно то, что может полностью уничтожить жесткий диск. В целом, физическая устойчивость твердотельного диска практически полностью зависит от его корпуса: чем крепче корпус, тем более устойчив диск.

Бесшумность

В твердотельном накопителе, в отличие от жесткого диска, нет движущихся частей — следовательно, нечему издавать звуки. В отличие от традиционных жестких дисков, SSD работают абсолютно бесшумно.

Наиболее важным это свойство видится нам в ключе построения систем хранения данных (дисковых массивов и data-серверов). Если современный дисковый массив на базе SAS-накопителей производит много шума (шумят вентиляторы охлаждения и сами диски), то такой же массив на базе SSD будет намного тише, так как шум будет производить только система охлаждения.

Низкое энергопотребление

Жесткие диски для настольных ПК (даже произведенные в последние годы) имеют довольно высокие показатели энергопотребления: в зависимости от режима работы и того, куда они установлены, они могут потреблять до 25 — 30 Ватт электроэнергии. Диски для портативных компьютеров потребляют ощутимо меньше, но все же их среднее энергопотребление составляет 4 — 5 Ватт.

Твердотельные диски в этом плане намного выгоднее — их энергоэффективность минимум в 3 раза лучше, чем у НЖМД форм-фактора 2.5′, и примерно в 15 раз лучше, чем у 3,5′ дисков.

Низкие значения нагрева во время работы

Очевидно, что при низком энергопотреблении уменьшается и тепловыделение, а, следовательно, и нагрев. Это особенно важно в замкнутых системах (портативных компьютерах, планшетах, трансформерах и пр.). Нагрев — это бессмысленное рассеивание энергии, соответственно, чем он меньше, тем более энергоэффективным является устройство.

Недостатки SSD

К сожалению, устройств без недостатков не бывает. Не лишены недостатков и твердотельные диски. Это: относительно высокая цена и ограниченный ресурс.

Цена SSD

За то время, что твердотельные накопители эволюционировали, их стоимость, естественно, падала — и продолжает падать до сих пор. В некоторых случаях стоимость SSD уже всего лишь в 2 раза выше стоимостью HDD той же емкости. Например, SSD Crucial емкостью 480 Гбайт стоит в среднем 55 долларов США; жесткий диск аналогичной емкости стоит около 30 долларов США. SSD некоторых производителей (SmartBuy, KingSpec и пр.) могут стоить почти столько же, сколько и жесткий диск аналогичной емкости (однако они заметно проигрывают в производительности и надежности более известным брэндам).

Между тем не стоит сравнивать жесткие диски с твердотельными из нижнего ценового диапазона, так как в нем находятся не самые надежные и производительные устройства. Давайте сравним жесткие диски известного производителя (например, Western Digital) и твердотельные диски известного бренда (скажем, Samsung).

Стоимость жесткого диска WD Slim емкостью 500 Гбайт составляет 35 долларов США, диск для настольного компьютера WD Survellance емкостью 1 Тбайт стоит 42 доллара США. SSD Samsung аналогичной емкости будут стоить 120 и 200 долларов США соответственно — то есть примерно в 4 — 5 раз дороже. Согласитесь, это серьезный недостаток.

Ресурс твердотельного диска

Это, пожалуй, основной недостаток SSD, не позволяющий на текущий момент безоговорочно доверять этим устройствам.

Как известно, существует определенное значение циклов перезаписи, на которое рассчитан твердотельный диск. Для современной MLC-памяти это значение в среднем составляет 3000. В грубейшем приближении это означает, что мы можем полностью переписать SSD 3 тысячи раз, после чего его ресурс будет выработан. На практике все намного сложнее, и диск выходит из строя раньше окончания этого цикла. Проблема в том, что операционная система использует часть пространства диска весьма интенсивно — например, ядро ОС, файл подкачки, сброшенные на диск части буферной памяти и пр. Это приводит к критическому износу небольшой части поверхности. Пока у диска есть резервные сектора, это не страшно, однако после их окончания диск начинает, что называется, «сыпаться», и в итоге выходит из строя.

Не будем голословными, а обратимся к исследованиям серьезных организаций.

Компания Google совместно с университетом Торонто провели исследование используемых в их серверах SSD и пришли к выводу, что чем старше твердотельный диск, тем больше он содержит ошибок. Вывод вполне естественный: с возрастом изнашивается любое устройство, причем для части из них совсем не обязательно при этом работать (например, от долгого стояния приходят в негодность резиновые части автомобиля).

Гораздо более интересным в этом ключе выглядит исследование журнала Tech Report о том, насколько в действительности хватает ресурса SSD на прямую перезапись данных. Журналом были выбраны диски только известных брендов, и заголовок статьи, в которой опубликовано исследование, говорит сам за себя: They’re all dead (они все мертвы). Тестировались диски емкостью 250 Гбайт, только половина из которых выдержала запись 1000 терабайт данных; другая половина вышла из строя при записи от 700 до 900 Тбайт. Может показаться, что это огромные цифры, однако только в процессе работы со swap-файлом операционная система ежедневно переписывает гигабайты (а в случае с компьютерными играми — десятки и даже сотни гигабайт) данных — из этого и складывается износ.

Выводы из первой части

Какие следует сделать выводы из всего, сказанного выше?

Первый, и самый главный, вывод: технический прогресс идет вперед, и очень скоро стоимость твердотельного диска сравняется со стоимостью жесткого. Я помню времена примерно 10 лет назад, когда SSD OCZ на 256 Гбайт стоил 750 евро; сейчас даже Samsung такой же емкости стоит уже 60 — 70 долларов, то есть цена за 10 лет упала более чем в 10 раз. Это хорошая тенденция, настраивающая на то, что пора подумать о постоянном использовании твердотельных накопителей.

Второй вывод: не смотря на все минусы, твердотельные диски выгодно отличает высокая производительность, низкое энергопотребление и теплоотдача. Кроме того, эти диски устойчивы к физическим воздействиям.

Ну и вывод третий. Во второй части этой статьи я расскажу вам, как организовать использование твердотельного диска в вашем компьютере и обезопасить себя от потенциальной потери данных.

Поделитесь и поставьте лайк, если Вам понравилось:

Новые горизонты SED: еще более жесткая привязка шифрования и электроники HDD

В 2007 г. корпорацией Seagate были представлены Self Encrypting Drives (самошифрующиеся диски). Позже эта технология была имплементирована и в диски других производителей (Western Digital, Toshiba, HGST и т.п.). Большинство твердотельных накопителей (если не все) также являются самошифрующимися.

Суть технологии достаточно проста. В схему обработки данных устройства встраивается аппаратный модуль шифрования, отвечающий за зашифровывание и расшифровывание данных на лету. В качестве стандарта шифрования используется AES c длиной ключа 128 или 256 бит.

Основной функцией SED является моментальное стирание диска по команде извне. Если для стирания данных ранее требовалось записать в каждый сектор определенные данные, то теперь достаточно просто изменить ключ шифрования. Данные, которые были на диске, уже не получится прочитать, ведь они будут аппаратно дешифровываться жестким диском уже с новым ключем. Соответственно, на выходе будут получаться не работающие файлы, а бессмысленный набор байт.

Казалось бы, вот она — надежная схема! Открытый ключ лежит на поверхности диска, но он зашифрован. В открытом виде он появляется только в аппаратной части диска (в той самой шифрующей микросхеме) — следовательно, его невозможно ни перехватить, ни подсмотреть. Однако, как оказалось, это не так.

Сначала компания АСЕ Lab, а потом и другие компании, выпускающие ПО и ПАК для восстановления данных, научились вытаскивать ключи шифрования из служебной или пользовательской зон жесткого диска. SED-шифрование накопителей Western Digital и Seagate перестало быть трудной задачей восстановления информации.

Тогда производители жестких дисков пошли дальше. Они заблокировали доступ к служебной области, где хранятся ключи шифрования. Некоторое время извлечение данных с таких накопителей представляло проблему — но, в итоге, и это было решено, и решение появилось в продуктах для восстановления информации.

Заметим, что до текущего года данные с самошифруемых дисков можно было восстановить и с использованием чужой (донорской) платы электроники. Скажем, часто для дисков, имеющих распаянный на плате электроники USB-разъем, подбиралась совместимая SATA-плата.

Очевидно, что производители HDD не могли мириться с тем, что их технология SED, позиционировавшаяся как очень надежная (АНБ США даже признало AES с длиной ключа 128 — 256 бит достаточной для защиты государственной тайны уровней secret и top secret). И вот этот момент, наконец, наступил.

Примерно с середины 2019 года жесткие диски, поддерживающие технологию SED (а это подавляющее большинство выпускаемых на рынок моделей), перешли на принципиально новый алгоритм обработки шифрования. Теперь ключ шифрования не будет работать на сторонней плате электроники. Ключи шифрования, что называется, намертво прибиваются гвоздями к уникальному ID микроконтроллера — без него расшифровать диск просто не получится, даже если удастся как-то достать ключи.

Это означает, что если у вас диск, произведенный с 2019 г., у которого активирована и работает функция самошифрования, выходит из строя, то восстановление с него информации будет возможно тогда и только тогда, когда сохранена его оригинальная плата электроники. Поставить «чужую» плату пока еще возможно — но лишь для того, чтобы получить доступ в служебную зону. Доступ к пользовательским данным может обеспечить только «родная» плата электроники — родной микроконтроллер. Если он по каким-либо причинам сгорел — данные на современном этапе развития технологий восстановления информации, увы, уже не восстановить.

Возможно, что в будущем будет решена и эта проблема — и скорее всего, так и будет. Однако сложность задачи очень высокая, и когда появится такое решение — никому неизвестно.

Поэтому мы дадим вам два простых совета.

  1. Старайтесь запитывать ваш жесткий диск максимально аккуратно, чтобы не произошел электрический шок устройства.
  2. Если ваш диск по каким-либо причинам вышел из строя, обращайтесь только к профессиональным специалистам, которые знают, что делать с самошифрующимися дисками нового поколения.
Поделитесь и поставьте лайк, если Вам понравилось:

К вопросу о том, какой жесткий диск купить. Жесткие диски разной степени бюджетности

Выбирая себе жесткий диск, многие обращают внимание только на три характеристики: объем, стоимость и производительность, при этом стараясь выбирать диски с наименьшим соотношением цена/объем. Вполне очевидно, что реселлеры, ощущая потребность пользователя в недорогих и емких устройствах, стараются максимально заполнить эту нишу; при этом более дорогие жесткие диски той же емкости либо не предлагаются вообще, либо предлагаются в ограниченном числе моделей и часто – на заказ.

Между тем дешево – далеко не всегда означает «хорошо», и уж тем более не означает «долговечно». Покупая жесткий диск из нижнего ценового сегмента, мало кто обращает внимание на то, что его гарантия – всего лишь 1 год (при этом более дорогие диски продаются с гарантией 3 – 5 лет); ожидать от диска с гарантией 12 месяцев долгих лет безупречной работы довольно наивно.

Производители жестких дисков уже давно выпускают их нескольких основных типов – по степени надежности и, соответственно, по цене. Это: диски начального уровня, или бюджетные (low cost drives); диски среднего уровня (стандартные диски, regular drives), диски высокого уровня (корпоративные, enterprise drives), и диски наивысшего уровня (диски для систем хранения данных, data center drives). Чем они отличаются?

Логично предположить, что основное их отличие – это количество использованных для производства дисков материалов и, как следствие, разная износостойкость и надежность.

Разберем это на примерах.

Пример первый. Бюджетный жесткий диск. Toshiba DT01ACA100

Первое, что бросается в глаза – это вес. Диск емкостью 1 Тбайт очень легкий,

Откроем диск. Что сразу привлекает внимание? Необычная форма магнита – первое. Она действительно нехарактерна, магнит прямой и очень маленький. Далее – пластиковый ограничитель хода актуатора. Ну и вишенка на торте – весьма аскетичный дизайн головок и дикий минимализм использованных деталей. Да, на материалах явно сэкономили: там, где можно поставить пластик – поставили пластик. Там, где можно сделать металл потоньше – сделали потоньше. Результат: накопитель получился легким, дешевым и не слишком долговечным. Первым износится ограничитель актуатора, который получает ежедневно сотни и тысячи ударов упора позиционера. В принципе, этого будет достаточно: лишенный ограничителя, блок магнитных головок начнет неприлично стучать, оповещая владельца такого диска о необходимости посетить офис компании по восстановлению данных.

Toshiba DT01ACA100. Вся аскетичность внутреннего дизайна в одном фото.

Думаете, это утопия? Увы, такие диски – частые гости в нашем офисе. Пользователь покупает самый дешевый диск и наивно полагает, что купил диск как минимум лет на пять. Однако бюджетные диски не часто доживают до столь почтенного возраста: если такой накопитель проживет 3 года, это уже будет очень хорошо.

Пример второй. Средний, или стандартный, жесткий диск. Hitachi HTS541616J9SA00

Стандартные жесткие диски – огромный пласт устройств, находящихся по уровню качества между бюджетными и корпоративными накопителями. Их отличают два момента: относительная (относительно enterprise устройств, конечно) дешевизна и весьма неплохое (относительно уже бюджетных) качество сборки и материалов. Давайте рассмотрим такой диск на примере ноутбучного накопителя Hitachi HTS541616J9SA00.

Почему для демонстрации накопителей этого класса мы выбрали именно диск форм-фактора 2.5 дюйма? Все просто. Ноутбук – пожалуй, наиболее распространенный тип персонального компьютера на сегодняшний день, и подавляющее большинство жестких дисков для ноутбуков относятся именно к среднему классу. Эти диски, если их не беспокоить сильными вибрациями или ударами, могут легко «прожить» 3 – 5 лет (нередко и десяток), их отличает высокая надежность.

Hitachi HTS541616J9SA00. Внешний вид накопителя среднего уровня.
Диск Hitachi HTS541616J9SA00 внутри.

Если заглянуть внутрь такого накопителя, то мы увидим, что в нем, как и в бюджетном диске, нет ничего лишнего. Однако магнит имеет полукруглую форму, перекрывая полностью актуатор, головки лишены аскетичности в своем дизайне, экономии на шурупах нет, да и металла в корпусе явно больше, чем в бюджетном диске (конечно, относительно, ведь мы сравниваем диски форм-фактора 2.5 и 3.5 дюйма). Кроме того, бросается в глаза качество материалов: относительно бюджетных дисков в гермоблоке средних материалы отшлифованы явно лучше, используется хромирование и никелирование, и другие методы продления жизни металла.

Пример третий. Накопитель enterprise уровня. Seagate Barracuda 7200.12

Да, не удивляйтесь. Когда этот диск выпускался серийно и продавался в магазинах, он был дороже своих терабайтных коллег. Это сейчас такой диск стоит немного, да и слава «мухи це-це» производства Seagate заметно снижает его ценность. Однако – повторюсь – эти диски относятся к корпоративному сегменту.

Если взять такой диск в руки, то вы ощутите вес. Но самое интересное в том, что этот вес примерно на 30% составлен массой узлов, отсутствующих в дисках двух предыдущих классов.

Прежде всего, это заметно увеличенный магнит, который не просто закрывает актуатор, а закрывает его с хорошим запасом. Стабильность магнитного поля увеличивает точность позиционирования, а значит – скорость работы диска и время его жизни.

Жесткий диск Seagate Barracuda 7200.12 внутри. Как видим, материалов производители не пожалели.

Дизайн головок относительно простой, но кронштейны достаточно толстые. Справа от блока магнитных головок расположен большой пластиковый футляр, внутри которого находится дыхательный фильтр диска и кусочки силикагеля. Таким образом при фильтрации воздуха, поступающего снаружи, в диске поддерживается одна и та же влажность, что очень важно как для производительности устройства, так и для сохранения его внутренних частей.

Рассекатель воздуха накопителя Seagate Barracuda 7200.12
Пакет магнитных пластин Seagate Barracuda 7200.12, верхний рассекатель удален.

Ну и, наконец, пакет магнитных пластин. Бросаются в глаза расположенные над каждой пластиной металлические полоски округлой формы – рассекатели. Их основная функция – обеспечение внутри гермоблока, в зоне действия каждой головки, стабильного потока воздуха определенного направления и силы. Организация такой сложной аэродинамики заметно повышает надежность механической части, а также позволяет нарастить производительность диска.

Пример четвертый. Накопитель наивысшего уровня. DELL MBE2073RC

Самые надежные диски производятся для систем хранения информации и дата-центров. Эти диски отличают три основных момента: очень высокая производительность, очень высокая надежность и очень высокая цена. Обычно накопители enterprise-уровня делаются высокоскоростных стандартов SCSI/SAS, но могут быть и SATA.

Все три характеристики дисков наивысшего уровня напрямую зависят от качества их исполнения. Если заглянуть внутрь такого диска, то мы увидим, что там почти нет свободного места: огромный магнит закрывает все пространство вокруг актуатора, справа от него – не менее огромный фильтр с силикагелевой закладкой, весьма приличной толщины кронштейны головок и в целом довольно сложно устроенный блок магнитных головок. Фильтры-уловители пыли с обеих сторон от пакета магнитных пластин, уже обязательные для дорогостоящих конструкций рассекатели (кстати, в дисках форм-фактора 3.5 дюйма (а мы рассматриваем в качестве примера 2.5-дюймовый диск) пакет магнитных пластин имеет размер 2.5 дюймовых, что дополнительно повышает надежность и увеличивает стабильность системы). Абсолютно никакой экономии на шурупах, все соединения крепки и надежны. Металла в корпусе очень много, диск по настоящему тяжелый.

Жесткий диск SAS форм-фактора 2.5 дюйма DELL MBE2073RC
Жесткий диск DELL MBE2073RC внутри

При такой конструкции допуски и погрешности в работе устройства очень невелики, а значит – устройство работает надежнее, быстрее и дольше. Не даром на такие диски гарантия производителя составляет 5 лет, а время их наработки на отказ исчисляется миллионами часов.

Так что же выбрать?

Вот этот вопрос – самый важный. Исходить надо из того, что с повышением уровня диска повышается и его надежность, однако абсолютно надежных дисков не бывает. Поэтому: если вы собираете устройство невысокой стоимости для домашнего использования и не планируете хранить на нем важных данных, то можно выбрать бюджетный диск. Задумываясь о компьютере для работы (на котором будут храниться важные данные), следует выбирать диск среднего или даже корпоративного уровня. Диски наивысшего уровня обычно не ставят в персональные компьютеры, но это не значит, что их туда ставить нельзя. Я наблюдал офисные машины, работающие на SAS-дисках.

Подбирая диски для системы хранения (NAS-бокс или сервер), нельзя ни в коем случае ставить диски бюджетного уровня. Эти диски не рассчитаны на серьезные нагрузки и начнут сбоить очень быстро, ну а выход их из строя произойдет задолго до окончания их гарантии. Для систем хранения данных лучше всего выбрать диски высокого уровня – тем более, что сейчас с этим абсолютно нет проблем. Все без исключения производители в настоящее время разделяют диски по типам их использования. Например, корпорация Seagate выпускает диски для ПК и игр (Barracuda и Firecuda, отличаются максимальным объемом; Barracuda выпускаются объемом до 14 ТБ, Firecuda – до 2), для NAS (то есть для устройств хранения данных) (IronWolf) и для систем видеонаблюдения (SkyHawk). Надо заметить, что среди современных дисков этого производителя нет устройств бюджетного класса. Отказ от производства такого продукта я считаю абсолютно правильным, ведь для устройств хранения информации надежность все же является определяющим фактором.

Конечно, как потратить ваши деньги при покупке такого важного устройства, как жесткий диск, решать вам. Однако учитывая назначение диска и степень риска выхода его из строя, лучше строить систему так, чтобы отказ накопителя не привел к фатальным или серьезным последствиям. Выбирая диск, исходите из описанных выше конструктивных особенностей. Безопасного хранения вашим данным и долгих лет жизни вашим дискам!

Поделитесь и поставьте лайк, если Вам понравилось:

Насколько защищены «стойкие» внешние жесткие диски?

Последнее время участились случаи обращения за восстановлением данных с внешних жестких дисков, которым откровенно досталось на орехи: стукнутые, падавшие, попавшие под машину, утопленные, заваленные бытовым мусором и т.п. Пользователь свято верит в написанное на коробке: RESISTANT! Чего там он resistant? О, ну конечно! Schock-resistant – сопротивляется шоку. Press-resistant – сопротивляется сжатию. Rain-resistant – сопротивляется дождю. И так далее и тому подобное.

Хорошо, скажете вы. Ведь производитель не просто так пишет на коробке со своим товаром, что он может сопротивляться тому, о чем он пишет. Хе-хе, конечно же не просто так. Основная цель проста, как летний зной: привлечь покупателя. Можно капнуть на корпус диска пару капель воды? Все, он уже rain-resistant. Никто же не обещает, что диск выдержит тропический тайфун, но легкий летний дождичек – вполне. Хотя и тут надо быть настороже – пара капель воды в разъеме вполне могут привести к неприятным и даже фатальным последствиям. Поэтому дождичком диск желательно все-таки не тестировать.

Или вот сжатие. На коробочке написано, что на диск можно давить сверху аж до 1 тонны, только возникает вопрос: как? Поставленный на грань, или лежащий плашмя? На бетонном полу или на песочке? Наехать медленно или быстро? Все это важно. Конечно, наезд автомобиля на большой скорости на асфальте диск не переживет. Скорее всего, после такого наезда мы увидим в результате небольшой плоский блин, которым до этого был ваш внешний жесткий диск. Ну или многочисленные кусочки оного, разбросанные в радиусе наезда. А вот если положить диск на мягкий песок, да проехать по нему аккуратно на мягкой зимней резине, то, скорее всего, такой диск останется в прекрасном состоянии и будет работать и дальше. Но при этом если наступить на него ногой – то может и не выдержать. Такая вот физика.

Продолжим. Сопротивление ударам (shock-resistant). О да, это самая веселая часть марлезонского балета. Тут масса условностей, гораздо больше, чем с давлением: и состояние диска (включен и читает, включен но запаркован, выключен, переведен в состояние сна, и т.п.), и положение диска во время удара (боком, плашмя, углом и т.п.), и был ли во время удара подключен кабель (он заметно снижает скорость падения, особенно если его пытаться судорожно поймать), и так далее. При каких условиях тестировалось сопротивление удару именно вашей модели диска – неведомо, но практически наверняка эти условия были совершенно щадящими.

Так что, совсем не верить производителю – спросите вы? Нет, ну отчего же… Верить, но относиться скептически и думать логически. Скептически вообще нужно относиться ко всему, что может идти вразрез с очевидностью. В нашем случае – это ударостойкость жестких дисков. Десятилетиями нас учили, что жесткий диск – хрупкое и очень ранимое устройство. И вдруг нам ломают стереотипы – оказывается, жесткому диску никакие удары нипочем, его можно бить, кидать и вообще под танк подкладывать. Где-то тут явно что-то не так.

Не, ну а может там, внутри коробки внешнего жесткого диска, супер-пупер хитрые системы поглощения ударов, титановые ребра и генератор антигравитации? Ага, точно. И смазка из жира единорога. Увы, но практика показывает, что вся антишоковая защита внутри коробки рядового внешнего жесткого диска – это две прокладки из вовсе не абсорбирующего шок материала (обычно это простая фольга пополам с полиэтиленом) снизу и сверху да резиновые нашлепки на головках болтов, которые вкручены в монтажные отверстия жесткого диска. Такая «защита» обеспечит легкое поглощение слабого удара – и не более того.

А с чем приходится встречаться диску? Из моего опыта: диск выпал из окна автомобиля на полном ходу во время копирования данных (для чего его было нужно держать прям у окна? хотя о чем это я…); диск кинули на диван, но слегка промахнулись и он улетел немного дальше (в окно); диск упал со стола, снесенный во время уборки/перемещения/работы; и т.п. Разнообразие ситуаций, при которых диску может достаться по полной программе, весьма велико. Но наиболее странными лично для меня выглядят вот эти: кинуть диск на диван/стол/стул; сесть/встать/прыгнуть на диск; подвесить диск за USB-кабель с последующим выскакиванием разъема из гнезда и падением диска (бывает, что и с весьма не хилой высоты); таскание диска в кармане с ударами по карману; перекидывание и перекладывание диска во время работы. Ну и всякие другие физические воздействия, которые хозяин производит со своим внешним жестким диском, находясь в трезвом рассудке и доброй памяти, а то и в нетрезвом состоянии.

Давайте расставим над «ё» все точки. Внешний жесткий диск – не то устройство, которое легко и непринужденно выдерживает падения и удары. Внутри в общем-то тесной (для обеспечения компактности, вестимо) коробочки – не важно, из какого материала она сделана – в 99.9% случаев находится обычный ноутбучный жесткий диск. Не специально спроектированный для того, чтобы выдерживать удары и вибрации, как в компьютерах некоторых автомобилей, а именно обычный ноутбучный жесткий диск. Почему не специально спроектированный? Это тема отдельной статьи, и я обязательно ее как-нибудь коснусь.

Так вот. Обычный ноутбучный жесткий диск – это простое устройство с двумя движущимися узлами: пакетом магнитных пластин (в свою очередь, состоящим из собственно пластин и шпиндельного двигателя, на который они надеты) и блоком магнитных головок (тут структура еще сложнее: кроме собственно головок, крепящихся на кронштейны посредством слайдеров, на оси блока магнитных головок крепятся микросхема коммутатора-предусилителя, выполняющая функции подключения магнитных головок к схемотехнике жесткого диска и предварительного усиления сигналов головок, и звуковая катушка, или катушка актуатора, обеспечивающая вкупе с магнитами движение и позиционирование блока магнитных головок).

В жестком диске движущиеся узлы – наиболее уязвимы. Давайте на секунду представим, что падает жесткий диск. В момент удара все его части испытывают определенную перегрузку, прямо пропорциональную его массе – то есть чем диск тяжелее, тем перегрузка больше. Определенные перегрузки диск может выдержать без последствий, так как он на них рассчитан. Но перегрузки больше расчетных – уже проблема. А ведь удар может быть очень сильным – общеизвестно, что сила удара будет зависеть не только от массы предмета, но и от высоты, с которой он упал. Упал с сантиметра – почти и не ударился. Упал с метра – переломал половину узлов.

Итак, падает жесткий диск. Магнитные пластины, которые находятся на шпинделе, сделаны в современных НЖМД из стекла, а значит – тяжелые. При падении они обязательно окажут воздействие на ось шпинделя – и чем сильнее удар, тем больше будет это воздействие. У них тоже есть инерция, и они будут воздействовать на ось самостоятельно, несмотря на то, что являются частью общей конструкции. Чем это грозит? Искривлением оси шпинделя или даже повреждением мотора. В исключительных случаях, когда сила удара исключительно велика, магнитные пластины разрушаются – мы ведь помним. что они сделаны из стекла.

Да, но это не единственная беда. Блок магнитных головок хотя и не такой тяжелый, но все же тоже обладает массой, к тому же – имеет эластичные слайдеры с расположенными на концах средоточиями массы (пластиково-керамическими MR-элементами головок). При ударе эти части также пострадают. Нам приходилось видеть всякое, от полного разрушения MR-элементов в результате соударения или перескакивания головок из одного парковочного паза в соседний, до деформации слайдера и его поводков.

Ну а уж говорить о том, что от удара может отколоться часть платы электроники; отвалиться плохо припаянный электронный компонент (да-да, мы  такое видали), появиться микротрещины в корпусе или на плате, и тому подобная экзотика – вообще не приходится. Это все происходит, и происходит регулярно.

Поэтому мы очень настойчиво рекомендуем: с внешним жестким диском надо обращаться нежно, как с первой любовью.  Он раним и хрупок, как майская роза, и для того, чтобы его не повредить – а уж тем более, не убить – требуется соблюдение двух простых правил: не бросать и не ронять.

Станислав К. Корб © 2019

Поделитесь и поставьте лайк, если Вам понравилось:

Телефон заблокирован: FRP. Что это такое и как с этим бороться.

Введение

До июня 2014 года украсть телефон на базе ОС Android было гораздо проще, чем сейчас. Хотя и сейчас украсть Android-телефон намного проще, чем iPhone или iPad, но все же… Просто до 2014 года в этой системе не было жесткой и хорошо продуманной системы защиты от несанкционированного использования чужого устройства. Будучи единожды проданным, по сути оно не было привязано к единственному владельцу, как это с самого начала было сделано в iOS. Действительно, политика смены владельца устройства Apple крайне проста: это возможно только в том случае, если владелец устройства сам передаст его вам, при этом удалив на своем устройстве все данные и отвязав его от своего Apple ID. Для Android все было намного проще: завладев аппаратом, можно сделать его сброс на заводские настройки (factory reset), после чего настроить под себя и начать использовать.

Оболочка EMUI, Android 8, аппарат Huawei Honor 7C

Шоколадно, не так ли?

Но в июне 2014 года народу была представлена новая операционка от Android под кодовым названием Lollipop, в которой оказалась реализована система защиты FRP: factory reset protection (защита от сброса до заводских настроек). В чем ее основная суть?

При первоначальной настройке телефона вы привязываете его к какому-либо аккаунту электронной почты – примерно также, как у Apple ID. По умолчанию (и это понятно, ведь андроид – продукт Google) используется почтовый сервис gmail корпорации Google. Если у вас нет аккаунта Google, при первом старте Android-устройства вам будет предложено его создать.

После того, как вы полностью проинициализировали свой телефон, он привязывается к настроенному аккаунту, что называется, намертво. Аккаунт можно изменить, привязав телефон к другому – но это делает настолько мало народа, что этим можно пренебречь.

Итак, вы настроили аккаунт и стали пользоваться аппаратом. И тут – о горе – телефон был утерян или его украли. Как правило, большинство пользователей блокируют экран или пин-кодом, или графическим ключом, или отпечатком пальца. Такую защиту почти невозможно обойти или взломать; нашедшему телефон или злоумышленнику не остается ничего другого, как выполнить factory reset. Что он и делает. И вот тут его поджидает FRP…

После выполнения сброса от пользователя потребуют повторить вход в связанный с телефоном аккаунт Google. Создать новый аккаунт будет невозможно: только вход в уже имеющийся, привязанный к устройству. Если вход выполняется с ошибками или не выполняется, телефон блокируется. В зависимости от производителя, блокировка может иметь разный вид: начиная от невозможности нормального старта аппарата (выход только на консоль восстановления) и заканчивая стартом аппарата, но блокировкой функционирования всех приложений (обычно при попытке тапнуть по приложению, выдается сообщение «Приложение не установлено»). Пользоваться таким устройством невозможно, новые попытки сброса заблокированы. Что-то сделать с телефоном можно лишь в том случае, если удастся отключить или обойти FRP.

Как бороться с FRP

Блокировка FRP. Аппарат Huawei P20 Pro

Итак, телефон заблокирован. Это, кстати, может не обязательно быть следствием злого умысла – скажем, при обновлении Android 8 до Android 9 (оболочка EMUI) вас также вполне могут попросить ввести установочные данные вашего Google-аккаунта. И если вы сделаете это неверно три раза – произойдет блокировка устройства. Поэтому крайне важно точно помнить данные своего аккаунта – при корректном их вводе проблем не возникнет.

Однако если все-таки вы стали «жертвой» FRP (повторюсь – это возможно даже по невнимательности), то методы обхода блокировки существуют, хотя почти все они связаны с новым (последующим) сбросом устройства. Ну а после сброса вам предстоит все-таки ввести корректные данные привязанного аккаунта, иначе все это зря. Либо сброс происходит с предварительной подготовкой – в систему добавляется новый пользователь, установочные данные которого известны, а права достаточны для того, чтобы устройство использовать.

Наиболее распространенный метод обхода блокировки FRP — переход в настройки устройства через Google Maps. Суть методики заключается в том, чтобы методами разрешенных переходов (ведь блокируется не весь телефон, а приложения) попасть в меню настроек аппарата, где либо попытаться ввести установочные данные связанного аккаунта, либо создать новый и привязать устройство к нему. Вариант с новым сбросом устройства в надежде на то, что после него он не попросит ввести данные аккаунта, можете даже не рассматривать: попросит. Часто пользователь просто создает гостевой аккаунт и пользуется устройством с него: мастер-аккаунт при этом остается замороженным, но если пользователю повезло и он смог создать «гостя» с высоким уровнем привилегий, он сможет устанавливать и удалять приложения, совершать звонки, фотографировать и т.п. – то есть делать все то, что может делать и «хозяин». Однако данные хозяина будут недоступны.

Еще один обход блокировки – зайти с компьютера в связанный аккаунт и стереть устройство с отвязкой аккаунта. После этого устройство можно будет сбросить без проблем и привязать на новый аккаунт.

Как видите, в любом случае – потеря данных. И это крайне неприятно.

Восстановление данных с устройств, заблокированных FRP

Даже с заблокированного FRP устройства восстановление данных возможно. Однако не следует путать восстановление данных и возвращение аппарата к жизни: специалист по восстановлению информации не преследует цели отремонтировать или разблокировать ваш телефон, его задача – извлечь с него данные.

Начнем с главного. Восстановить данные с FRP-блокированного телефона можно не со всех моделей. Важным критерием оценки восстановления информации с такого аппарата является наличие root-прошивки: если она есть, то восстановление возможно. Если же нет – то нужно ждать лучших времен, когда она появится. Выше я говорил, что аппарат не даст возможности совершить повторный сброс до заводских настроек, либо (если даст), то при запуске все равно попросит ввести установочные данные первоначального связанного аккаунта. Так как же заставить его принять root-прошивку?

Методики существуют. Самая простая – выход в настройки аппарата и создание нового пользователя, из под которого уже и рутится телефон. Сразу скажу: срабатывает не со всеми аппаратами, однако примерно половину заблокированных FRP устройств можно таким образом разблокировать. Другая половина разблокируется через «жесткий» root – то есть прошивка льется в плату телефона через JTAG или другие (предусмотренные производителем) протокола обмена данными. При этом крайне важно понимать, что как таковой разблокировки устройства не происходит – фактически мы всего лишь получаем доступ к внутренним накопителям телефона, которые можем скопировать к себе на жесткий диск, проанализировать и попытаться вытащить из них данные.

Почему попытаться? Довольно много моделей телефонов, которые продаются в настоящее время, зашифрованы. Это вовсе не обязательно, но встречается часто. Таким образом, даже получив образ аппарата, можно ничего не восстановить, так как данные зашифрованы. Однако и шифрование – еще не приговор. Для некоторых типов шифрования Android уже давно существуют программы – генераторы ключа, если известен пароль (пин-код).

По моему опыту можно сказать, что в случае блокировки FRP успешно восстанавливаются данные примерно с 75% телефонов; не поддаются восстановлению данные только с тех аппаратов, где хозяин не помнит никаких паролей, пин-кодов и прочих сведений, необходимых для расшифровки. Старайтесь не забывать пароли и установочные параметры связанных аккаунтов, и вам, скорее всего, никогда не придется восстанавливать данные с устройства, заблокированного FRP.

Станислав К. Корб ©2019

Поделитесь и поставьте лайк, если Вам понравилось:

Western Digital разрабатывает жесткие диски с двойным актуатором

В прошлом году корпорация Seagate анонсировала революционную технологию: внутри одного гермоблока предлагается независимо работать двум разным комплектам головок (двухактуаторный БМГ) (мы писали об этом). Теоретически это должно снизить энергопотребление при сравнении с одноактуаторными моделями такого же объема, но основная причина разработки таких моделей не в энергоэффективности, а в производительности. Жесткие диски уже давно сильно уступают твердотельным по этому параметру, и массовое распространение SSD до настоящего времени сдерживала только их относительно высокая стоимость. Однако ценовой барьер постепенно тает, и в скором времени может оказаться так, что жесткие диски при сравнении с твердотельными будут как черепаха и ахал-текинский скакун.

Использование двойного актуатора теоретически дает двойной прирост производительности, так как внутри одного и того же гермоблока начинают работать два физически разных комплекта головок. Разработчики обещают увеличить производительность дисковой подсистемы, кроме теоретических 100%, еще как минимум на 50% за счет организации внутри такого гермоблока (по сути, это два разных жестких диска в одной банке) RAID-массива уровня 0 (страйп). Логично заключить, что такой сумасшедший прирост производительности моментально делает жесткие диски нового поколения весьма конкурентоспособными при сравнении с твердотельными дисками даже среднего сегмента, ведь сейчас производительность дисковой подсистемы упирается не в производительность самого устройства, а в производительность интерфейса. Именно поэтому разрабатываются и внедряются новые скоростные интерфейсы, такие как SD Express, USB 3.2, NMVe и т.п. Но вдохнуть «новую жизнь» в старый добрый SATA без радикального увеличения производительности SATA-устройств невозможно.

Именно эту задачу и решает двойной актуатор.

Естественно, основной конкурент корпорации Seagate – Western Digital – никак не мог оставаться в стороне и смотреть, как Seagate отъедает солидную часть рынка жестких дисков. Вообще, эти два гиганта цифровых устройств хранения информации идут в ногу достаточно синхронно и делят рынок почти пополам. Оба почти одновременно начали делать жесткие диски форм-фактора 2,5 дюйма толщиной 5 и 7 мм; оба почти одновременно начали выпускать гибридные накопители SSHD и вести разработки (а затем и выпускать) твердотельные диски; с завидным постоянством оба производителя анонсируют и выпускают рекордсменов емкости (сначала 8 Тб, потом 12, теперь 16 и идет разговор о 20); и так далее.

И вот Western Digital анонсирует, что разработки дисков с двойным набором головок идут полным ходом. Эта информация появилась недавно на сайте ANANDTECH. Не буду утомлять вас описанием самой технологии – она ничем не отличается от уже анонсированной корпорацией Seagate технологии Mach2. Остановлюсь лишь коротко на том, чем нам эта технология «грозит».

Итак, первый плюс от ее внедрения – это заметный прирост производительности дисковой подсистемы, которая, теоретически, должна заработать с такой же скоростью, как SSD среднего уровня. Это раскрывает новые горизонты для геймеров, видеоредакторов и других пользователей ПК, работающих с большими объемами информации. Второй плюс также очевиден – намного большая емкость устройства при относительно невысокой (относительно твердотельного диска) цене. Ну и третий плюс – это несколько более низкое энергопотребление. Разработчики что Seagate, что WD обещают снизить энергопотребление двухактуаторных дисков примерно на 25 – 30 %. В пределах одного компьютера это немного, но в пределах глобального энергопотребления – немало.

Собственно, плюсы на этом заканчиваются, и начинаются минусы.

Первый и самый главный минус – эти устройства будут статистически менее надежны, чем одноактуаторные диски, а с реализацией страйп-архитектуры надежность уменьшается еще больше. Уменьшение надежности объясняется простой механикой и элементарной логикой: чем больше в устройстве движущихся частей, тем больше вероятность выхода из строя любой из них.

Из первого минуса вытекает второй: в случае выхода из строя такого диска восстановить с него данные будет намного сложнее, особенно – при использовании технологии страйпирования. Почему? Причины просты. Во-первых, работа двойного актуатора означает совершенно иную физику (и прежде всего – аэродинамику) внутри гермозоны, а значит, более тонкую работу микропрограммы и более тонкие настройки головок. Во-вторых, если используется страйпирование, для восстановления данных будет необходимо получить содержимое каждой пластины; пропуск одной будет означать невосполнимые для большинства файлов потери, а значит – невозможность восстановления данных. Таким образом, диски с физически поврежденными поверхностями (запилы, царапины) автоматически попадают в категорию «восстановление данных невозможно или возможно с очень небольшим процентом выхода годного» даже если повреждена только одна поверхность из всех. Такое невозможно для подавляющего большинства одноактуаторных дисков: даже при повреждении одной (или в некоторых случаях больше) поверхностей восстановление значительной части данных все еще остается возможным.

Третий минус также очевиден, как первые два: для обеспечения надежности хранения информации ее дублирование (не резервное копирование, а именно дублирование) становится одной из первостепенных задач построения систем, в которых будут работать двухактуторные диски. А это, как ни печально, убьет одно из перечисленных выше преимуществ, а именно – относительно низкую стоимость и относительно высокую энергоэффективность.

Таким образом, пока что, в чистой теории, я могу характеризовать двухактуаторные диски как кота в мешке: при очевидных плюсах имеются весьма существенные минусы, которые лично меня отвратят от покупки такого устройства как минимум в первые годы его промышленной реализации. Однако если производители реализуют двухактуаторные модели с единственной головкой на кронштейне (то есть одна пластина, две покерхности, с каждой из которых работает независимая головка) – такой диск я бы купил не задумываясь, так как использование его в качестве системного заметно ускорит работу дисковой подсистемы компьютера.

Станислав К. Корб ©2019

Поделитесь и поставьте лайк, если Вам понравилось:


Мы принимаем к оплате | We accept payments


Мы стажировались и работали в странах | We worked or practiced in following countries

Facebook560
126
YouTube12
Instagram0