SSD LENOVO, NVME, 256GB: ВОССТАНОВИТЬ ДАННЫЕ С ТВЕРДОТЕЛЬНОГО ДИСКА

Задача. Восстановить данные с SSD Lenovo 256GB, интерфейс NVMe

Описание проблемы. Накопитель поступил с жалобой на то, что он не определяется компьютером.

Результаты диагностики. Для диагностики накопителя использованы ПАК РС-3000 и переходник NMVe — SATA. Обнаружено, что диск имеет дефектные сектора.

Необходимые для восстановления информации процедуры.

1) Подключение интерфейса на интерфейс SATA.

2) Подготовка к созданию посекторной копии накопителя (настройка накопителя и интерфейса).

3) Посекторное клонирование накопителя с интеллектуальной обработкой дефектных секторов.

4) Анализ полученного образа, построение виртуальной файловой системы.

5) Извлечение данных из полученного образа.

Результат.

Данные восстановлены с минимальными (менее 0.1%) потерями.

Особенности накопителя.

Интерфейс NVMe начал внедряться в 2012 г., однако только с 2015 г. он получил более-менее широкое распространение. На текущий момент NVMe-накопители не являются широко распространенными устройствами в пользовательском сегменте, однако они активно используются в серверном и enterprise-сегментах благодаря высокой производительности устройтсв (фактически подключение идет по высокоскоростной шине PCIe). В нашем опыте этот диск — первый накопитель с интерфейсом NVMe. Очевидно, его проблемы возникли в результате перегрева компьютера, в котором он был установлен (один из относительно новых ноутбуков Lenovo).

Поделитесь и поставьте лайк, если Вам понравилось:

SAMSUNG MZ-JPU512T/0A6 512 GB: ВОССТАНОВИТЬ ДАННЫЕ С ТВЕРДОТЕЛЬНОГО ДИСКА

Задача. Восстановить данные с SSD Samsung MZ-JPU512T/0A6 512 GB

Описание проблемы. Диск не определяется системой.

Результаты диагностики. Диагностика проведена с использованием ПАК РС-3000, осциллографа и специализированного переходника с проприетарного разъема твердотельного диска на SATA. Неисправность: выход из строя нескольких элементов обвязки питания.

Необходимые для восстановления информации процедуры.

1) Замена вышедших из строя SMD-элементов обвязки питания.

2) Запуск накопителя в технологическом режиме.

3) Подготовка устройства к вычитыванию данных.

4) Вычитывание пользовательских данных на исправный носитель методом создания посекторной копии диска.

Результат.

Данные восстановлены полностью.

Поделитесь и поставьте лайк, если Вам понравилось:

SSD SILICON POWER S55 240 GB: ВОССТАНОВИТЬ ДАННЫЕ С ТВЕРДОТЕЛЬНОГО ДИСКА

Задача. Восстановить данные с SSD Silicon Power S55 240 GB

Описание проблемы. Накопитель определяется в системе названием SATAFIRM S11, данные не видны

Результаты диагностики Для диагностики использован ПАК РС-3000. Выяснено, что у диска имеются проблемы со служебной зоной.

Необходимые для восстановления информации процедуры.

1) Запуск диска в технологическом режиме (с загрузкой лоадера).

2) Анализ системной области. Построение транслятора.

3) Вычитывание диска.

4) Извлечение из полученного образа пользовательских данных.

Результат.

Данные восстановлены полностью

Особенности накопителя.

SSD относится к богато представленному на рынке сегменту твердотельных дисков, посроенных на контроллерах Phison. Как правило, восстановление данных с таких накопителей с использованием ПАК РС-3000 не вызывает проблем.

Поделитесь и поставьте лайк, если Вам понравилось:

INTEL SSDSCKKF256H6: ВОССТАНОВИТЬ ДАННЫЕ С ТВЕРДОТЕЛЬНОГО ДИСКА

Задача. Восстановить данные с SSD Intel SSDSCKKF256H6

Описание проблемы. Накопитель поступил с жалобой на то, что он не определяется компьютером.

Результаты диагностики. Для диагностики накопителя использованы ПАК РС-3000, цифровой мультиметр и цифровой осциллограф. Выяснено, что электроника накопителя исправна, а причина отказа — невозможность проинициализировать транслятор (циклическая загрузка в память диска одного и того же содержимого, имеющего поврежденную структуру).

Необходимые для восстановления информации процедуры.

1) Запуск накопителя в режиме загрузчика.

2) Загрузка в накопитель модифицированной микропрограммы (загрузчик диска).

3) Построение системы трансляции, применение ее в буферном ОЗУ диска.

4) Подготовка накопителя к вычитыванию данных.

5) Вычитываение накопителя в технологиеском режиме.

6) Извлечение данных из полученного образа.

Результат.

Данные восстановлены полностью.

Особенности накопителя.

Этот твердотельный диск построен на базе микроконтроллера SM2258G, имеющего ограниченную поддержку РС-3000 SSD. Для восстановления данных использованы собственные разработки команды HDD Research Group, позволяющие прервать циклическую подгрузку недообработанного дефекта, однако подключение диска к компьютеру производилось с использованием ПАК РС-3000.

Поделитесь и поставьте лайк, если Вам понравилось:

SSD PLEXTOR M6M128 GB: ВОССТАНОВИТЬ ДАННЫЕ С ТВЕРДОТЕЛЬНОГО ДИСКА

Задача. Восстановить данные с SSD Plextor M6M128 GB

Описание проблемы. Накопитель не определяется в системе.

Результаты диагностики Для диагностики использован ПАК РС-3000. Выяснено, что микропрограмма накопителя находится в зависшем состоянии по причине разрушения системы трансляции.

Необходимые для восстановления информации процедуры.

1) Подготовка накопителя к разблокировке: припаять Rx и Tx.

2) Разблокировка SSD. Построение системы трансляции.

3) Вычитывание диска в технологиеском режиме.

4) Извлечение из полученного образа пользовательских данных.

Результат.

Данные восстановлены полностью.

Особенности накопителя.

Для накопителей на базе микроконтроллеров Marvell не существует универсальных решений по восстановлению данных. Довольно часто при зависании диска (зависшая микропрограмма) запустить диск в safe mode с поддержкой SАТА-интерфейса не удается, потому разблокировку диска приходится делать через терминал.

Поделитесь и поставьте лайк, если Вам понравилось:

SAMSUNG 256GB MSATA SSD: ВОССТАНОВИТЬ ДАННЫЕ С ТВЕРДОТЕЛЬНОГО ДИСКА

Задача. Восстановить данные с твердотельного диска Samsung 256GB mSATA SSD

Описание проблемы. Накопитель поступил с проблемой «не определяется в системе».

Результаты диагностики. Для диагностики накопитель был исследован с помощью ПАК РС-3000 и специализированного переходника производства АСЕ Lab. Выяснено, что накопитель не выходит из состояния «занят». Причина: повреждение таблиц трансляции в силу сильного износа NAND-микросхем.

Необходимые для восстановления информации процедуры.

1) Перевод накопителя в Safe Mode. Загрузка в накопитель лоадера, инициализация накопителя.

2) Построение системы трансляции с помощью ПАК РС-3000.

3) Клонирование накопителя в технологическом режиме.

4) Извлечение данных из полученного образа.

Результат.

Данные восстановлены полностью.

Особенности заказа.

Твердотельные накопители имеют характерные только для них виды неисправностей, одна из наиболее распространенных — «вечно занят». Данная проблема возникает тогда, когда NAND-микросхемы сильно изнашиваются, и системы коррекции ошибок накопителя перестают справляться с потоком ошибок. Обработка этого потока и «вешает» диск.

Поделитесь и поставьте лайк, если Вам понравилось:

SSD PATRIOT 240 GB: ВОССТАНОВИТЬ ДАННЫЕ С ТВЕРДОТЕЛЬНОГО ДИСКА

Задача. Восстановить данные с твердотельного диска Patriot емкостью 240 GB

Описание проблемы. Накопитель поступил исправным, но на нем отсутствуют данные. Клиент утверждает, что данные не удалял и диск не форматировал.

Результаты диагностики. Для диагностики накопителя использован ПАК РС-3000. Выяснено, что было произведено обновление прошивки накопителя, одним из этапов которого является полная очистка диска с последующей проверкой поверхности.

Необходимые для восстановления информации процедуры.

1) Подключение накопителя в технологическом режиме.

2) Разбор системы трансляции накопителя, поиск старших таблиц трансляции.

3) Применение старших таблиц трансляции.

4) Вычитывание пользовательских данных на исправный носитель методом создания посекторной копии диска.

Результат.

Данные восстановлены полностью.

Особенности заказа.

Некоторые современные накопители, и особенно — твердотельные — поддерживают функцию быстрого форматирования или быстрого стирания данных. Реализована она очень просто: текущие таблицы трансляции заменяются на дефолтные, и, вне зависимости от того, есть на диске данные или нет, при любом обращении он будет отдавать на интерфейс нули до тех пор, пока в сектора не записать новые данные. Многие диски хранял «историю» этих изменений, и если после быстрого формата или стирания данные на диск не записывались, то, что было «похоронено» под новым транслятором, еще можно спасти.

Поделитесь и поставьте лайк, если Вам понравилось:

SSD ADATA SU800: ВОССТАНОВИТЬ ДАННЫЕ С ТВЕРДОТЕЛЬНОГО ДИСКА

Задача. Восстановить данные с твердотельного диска ADATA SU800 емкостью 256 GB

Описание проблемы. С твердотельного диска удалены данные.

Результаты диагностики. Для диагностики накопителя использован ПАК РС-3000. Выяснено, что при удаении данных в накопителе отработала технология TRIM. Восстановление данных не представляется возможным

Результат.

Восстановление данных невозможно.

Особенности заказа.

Новые операционные системы, оптимизированные для использования SSD, имеют специализированные опции, направленные на продление срока службы твердотельных дисков. Кроме прочих, это технология TRIM, о которой мы уже писали. Принцип прост: чем больше свободного места имеется на SSD, тем более длинной будет его жизнь. Поэтому при удалении данных с дисков, поддерживающих технологию TRIM, даже если в файловых таблицах (MFT, Catalog File и т.п.) остается имя удаленного файла с пометкой «удален», сам файл удаляется перманентно, место, где он находился, полностью очищается (в зависимости от операционной системы, либо с использованием заполнения сигнатурой 00h, либо FFh). В этом случае, естественно, восстановление данных невозможно уже даже в теории, так как переписанные в ячейках памяти NAND-микросхем данные невозможно «откатить» обратно.

Поделитесь и поставьте лайк, если Вам понравилось:

SAMSUNG MMCRE64G5MPP: ВОССТАНОВИТЬ ДАННЫЕ С ТВЕРДОТЕЛЬНОГО ДИСКА

Задача. Восстановить данные с SSD Samsung MMCRE64G5MPP

Описание проблемы. Накопитель поступил с жалобой на то, что он не определяется компьютером.

Результаты диагностики. Для диагностики накопителя использованы ПАК РС-3000, цифровой мультиметр и цифровой осциллограф. Выяснено, что электроника накопителя исправна, а причина отказа — невозможность проинициализировать транслятор (циклическая загрузка в память диска одного и того же содержимого, имеющего поврежденную структуру).

Необходимые для восстановления информации процедуры.

1) Запуск накопителя в режиме загрузчика.

2) Загрузка в накопитель модифицированной микропрограммы (загрузчик диска).

3) Построение системы трансляции, применение ее в буферном ОЗУ диска.

4) Подготовка накопителя к вычитыванию данных.

5) Вычитываение накопителя в технологиеском режиме.

6) Извлечение данных из полученного образа.

Результат.

Данные восстановлены полностью.

Особенности накопителя.

Твердотельные накопители, в отличие от жестких дисков, не имеют в своей конструкции движущихся частей. У большинства SSD стандартной проблемой является повреждение или разрушение модулей трансляции, которое можно исправить только с использованием специализированных программно-аппаратных или программных продуктов.

Поделитесь и поставьте лайк, если Вам понравилось:

SSD форм-фактора NF1 продемонстрировала на этой неделе корпорация Samsung

На этой неделе корпорация Samsung продемонстрировала успехи в производстве SSD-дисков форм-фактора NF1 (некоторые называют его М.3). На выставке OCP 2018 (Open Compute Project) компания продемонстрировала свои SSD указанного форм-фактора в составе двухпортового сервера на 36 дисков от компании Supermicro.

Продемонстрированные на выставке твердотельные диски линейки PM983 имеют емкость 8 и 16 ТБ. Компания впервые показала публике свои SSD емкостью 16 ТБ. Форм-фактор NF1 был разработан для того, чтобы увеличить емкость твердотельного диска за свет упаковки NAND-микросхем в два ряда. Другая особенность этого форм-фактора заключается в возможности горячей замены.

Диски РМ983 построены на основе контроллера Samsung Phoenix (как, собственно, большинство новейших твердотельных накопителей от Samsung – например, упомянутые недавно Samsung 970 EVO и Samsung 970 PRO) и используют 64-слойную память 3D TLC NAND. Кроме форм-фактора NF1, эти SSD будут предлагаться также в М.2-исполнении (однако точная дата релиза М.2-версии продукта не была обозначена корпорацией Samsung). Скорости чтения и записи продемонстрированных устройств не являются чем-то выдающимся: для чтения заявлена скорость чтения 3000 МБ/с, а для записи – 1900 МБ/с.

Официально форм-фактор NF1 был представлен корпорацией Samsung на прошлогодней конференции производителей флеш-памяти. С того времени компания была занята разработкой экологического стандарта нового форм-фактора и работой по его популяризации. В итоге корпорация получила поддержку NF1 от трех крупных игроков на рынке NAND-устройств: ADATA и AIC на выставке CES 2018 (Consumer Electronics Show) продемонстрировали сервер с отсеками для накопителей форм-фактора NF1 (оборудованный дисками IM3P33E1, имеющими емкость от 240 ГБ до 2 ТБ) и компания Supermicro с ее сервером, о котором речь идет в этом сообщении.

Кстати, сервер выглядит довольно мощным: в него можно установить два процессора Xeon Scalable (до 56 ядер), имеется 24 слота DDR4 (всего поддерживается до 3 ТБ оперативной памяти) и 36 портов для твердотельных накопителей форм-фактора NF1 (до 576 ТБ емкости при установке SSD максимального объема), причем накопители, как говорилось выше, имеют поддержку горячей замены. Для серверов типа 1U такой объем носителей на настоящее время выглядит революционным; думается, однако, что такое устройство окажется по карману далеко не каждому.

Samsung на упомянутой выше выставке ОСР 2018 продемонстрировал два сервера с портами NF1; это означает, что на текущий момент только два игрока на рынке серверных технологий – AIC и Supermicro – готовы к использованию нового форм-фактора. Вполне понятно и ожидаемо – серверная индустрия довольно недоверчиво относится к инновациям такого рода. Учитывая такую «заторможенность» реакции серверного рынка, корпорация Samsung представила разработанные ей адаптеры для разъемов форм-фактора NF1, которые делают возможной установку SSD этого типа в любой существующий сервер. На текущий момент существует три таких адаптера: PCIe 3.0 х4 -> NF1 (позволяет подключить один SSD на один PCIe разъем), FHHL-адаптер PCIe x8 -> NF1 (позволяет подключить два SSD на один PCIe разъем) и адаптер U.2 на два SSD форм-фактора NF1 для разъемов PCIe 3.0 x4 (позволяет увеличить производительность этого медленного по нынешним меркам интерфейса). Конечно же, все эти адаптеры поддерживают ключевую особенность данного форм-фактора: горячую замену.

Источник

Станислав Корб, ©2018

Поделитесь и поставьте лайк, если Вам понравилось:


Мы принимаем к оплате | We accept payments


Мы стажировались и работали в странах | We worked or practiced in following countries

Facebook560
126
YouTube12
Instagram0