Устройства на базе NAND-памяти давно заняли почетное место незаменимых в нашем мире. Флешки, SSD, сотовые телефоны, MP3-плейеры, диктофоны, камеры и многое другое – все это не может функционировать без NAND-микросхем. Производители давно бьются за увеличение емкости и производительности этих чипов, двигаясь, в общем-то, пока только в одном направлении: многослойность.
Типы NAND-микросхем
В настоящее время используются NAND-чипы трех основных типов:
SLC – Single Layer Cell, однослойная ячейка; в одной ячейке хранится 1 бит данных.
MLC – Multi Layer Cell, многослойная ячейка; в одной ячейке хранится 2 бита данных.
TLC – Triple Layer Cell, трехслойная ячейка; в одной ячейке хранится 3 бита данных.
Ячейки этих типов памяти могут упаковываться в трехмерные структуры по технологии 3D-NAND – кристалл формируется не только вертикальными, но и горизонтальными слоями; при этом плотность упаковки данных значительно возрастает, что сильно увеличивает емкость микросхемы. Современный предел многослойности в 3D-NAND структурах – 96 слоев.
Почти все современные устройства большой емкости, в особенности, выпущенные корпорациями Samsung и Intel, сделаны по технологии 3D-NAND; количество слоев в микросхеме до недавнего времени ограничивалось максимальными 64 слоями (сейчас их может быть до 96).
Плотность, емкость и компактность: борьба за рынок
Современный рынок гаджетов движется в двух, казалось бы, взаимоисключающих направлениях: миниатюризация и максимизация. Пример – iPhone. Помните, каким был iPhone 4? iPhone 5 был немного больше. iPhone 6 и 7 – еще больше; современные iPhone X, XS, XR и особенно их Max разновидности по размеру уже сравнимы с китайскими «лаптями» от Meizu и Xiaomi. Да, размеры гаджетов увеличиваются, но при этом уменьшаются размеры чипов, которые в них используются. Материнская плата мобильного телефона несет (за очень редкими исключениями) только один чип NAND-памяти. Его емкость и ограничивает емкость «внутренней памяти» телефона.
Мы все помним, что те же iPhone 4 производились с минимальной емкостью 8 GB; для iPhone 5 это уже 16. Современные аппараты этого производителя «начинаются» от 128 или 256 Гбайт – это вполне логично, ведь микросхемы этого объема доступны на рынке за относительно небольшие деньги. В дальнейшем емкости будут только расти.
Не менее логично и то, что чем большего объема чипы NAND-памяти будут доступны на рынке, тем более емкими будут изготавливаться основные гаджеты. Это очевидная закономерность.
Соответственно, количество слоев в микросхемах NAND-памяти, по этой логике, должно со временем возрастать.
Что такое QLC
Корпорация Micron совместно с Intel разработала новый стандарт построения ячеек NAND-микросхем: QLC.
QLC (quad level cell) – это четырехслойная структура, позволяющая хранить в одной ячейке памяти 4 бита данных. Такой принцип построения ячейки позволяет увеличить плотность записи в NAND-микросхему на 33%, уменьшить энергопотребление, увеличить компактность. Это, без сомнений, новый прорыв в конструировании флеш-устройств.
Однако, как у любого прорыва, у этого есть свои слабые места. Прежде всего, это надежность. Чем больше слоев, тем больше вероятность того, что какой-то из них может выйти из строя, что приведет к недоступности всей ячейки и, как следствие, к потерям данных.
Следующая проблема, вытекающая из более плотной упаковки ячеек – это ресурс. При использовании боле компактных структур ресурс падает довольно сильно, для QLC памяти заявлено всего лишь 1000 циклов перезаписи в ячейку. Понятное дело, что проблемы с ресурсом будут решаться огромными массивами избыточных 3D-NAND структур, используемых в качестве запаса для саморемонта микросхемы.
Еще одна проблема – удорожание технологии производства. Ожидать, что новая, более емкая, память, будет дешевле, не приходится. С увеличением емкости чипа его стоимость будет возрастать. Отрадно лишь то, что соотношение объем/цена все-таки уменьшается, т.е. стоимость одного гигабайта емкости для конечного пользователя будет меньше. Но общая стоимость устройств, использующих NAND-память, существенно не «пострадает».
96 слоев: что дальше?
Логично, что для управления ячейками памяти в настолько многослойных структурах (подача питания, считывание, запись) требуется подвести к каждому слою проводники и управляющие электронные компоненты. Раньше все это хозяйство напылялось на каждый слой отдельно, от этого страдали размеры чипа (до 50% его объема занимала вспомогательная электроника). Новые QLC-чипы сделаны по-другому, в них применяется технология СuA (CMOS under the Array) – вся управляющая схемотехника расположена отдельным слоем под многослойным «небоскребом» ячеек памяти. Это позволило уменьшить размер чипа минимум на 25%.
Правда, производитель ничего не говорит о том, что с уменьшением размера микросхемы и увеличением его многослойности должно увеличиться тепловыделение. Но, очевидно, на текущем этапе развития технологии это не так критично.
Ждет ли нас дальнейшее увеличение многослойности NAND-кристаллов? Совершенно однозначно, да. Использование технологии CuA открывает новые перспективы в деле упаковки 3D-NAND структур. Я уверен, что не за горами технологические процессы, позволяющие упаковывать в один ряд более 100 слоев.
Что нас ждет?
Помните, что было с рынком, когда на него попали первые жесткие диски емкостью 1 Тбайт? Диски расхватывали, как горячие пирожки; каждый хотел иметь такой диск. А помните, что случилось потом?
Да-да. Муха ЦеЦе (Seagate Barracuda 7200.11 и 7200.12) и «скребущий лишай» (WD Green Caviar). Диски такой емкости оказались настолько сырыми, что начали отказывать в массовых масштабах: означенные выше Seagate страдали «мухой ЦеЦе» — самоблокированием микропрограммы, которое могло быть инициализировано практически любым «неприятным» для диска событием. При этом в терминал диск выдавал сообщение LED CC (именно из-за этого СС болезни и дали название той самой мухи, которая переносит опаснейшее заболевание). Но, в отличие от дисков WD, эта болезнь лечилась относительно легко.
С WD все было сложнее. В один «прекрасный» момент диск начинал «скрести головками» — издавать шебуршащие звуки при попытке старта компьютера или при любом обращении к диску; при этом система зависала навсегда. Как ни странно, но природа этого поведения и природа «мухи ЦеЦе» одинаковы – и в том, и в другом случае виновата так называемая «фоновая активность» (как пример такой активности приведем работу программы самотестирования SMART). Микропрограмма занимается своими делами как бы между делом, и пока она способна это делать – накопитель здоров. Но как только фоновая активность возрастает, диск перестает отвечать на запросы и «зависает». При этом микропрограмма фоновой активности активно (простите за тавтологию) двигает головками, перемещая информацию в рамках этой самой активности.
К чему я все это рассказал? Уверен, что с учетом вышесказанного о надежности и ресурсе нового типа памяти, нас ждет примерно тоже самое, что и в случае с терабайтными дисками: череда эпических фейлов производителей, начавших использовать эту память в массовом производстве. Можно даже предугадать, какие именно фейлы нас ждут: во-первых, заметные тормоза при работе таких устройств после преодоления основным количеством рабочих ячеек порога ресурса перезаписи, а во-вторых, заметная потеря производительности в высокоскоростных устройствах. Наконец, нас ожидают устройства на базе QLC-памяти с сильно возросшим количеством дефектных секторов (как это было в самом начале использования TLC-микросхем).
Но, как это обычно бывает, после обкатки технологии и процессов производства кристаллов, более новые поколения устройств станут более надежными и менее дорогостоящими.
Поэтому я, пожалуй, подожду годик, прежде чем куплю устройство, сделанное на базе микросхем QLC.
А между тем, корпорация Micron уже выпустила первый 96-слойный NAND-чип на базе технологий QLC и CuA объемом 1 Тб. В спину Micron жарко дышит Samsung с его технологией V-NAND (по сути тот же QLC) – их чипы аналогичной емкости активно используются в корпоративных SSD емкостью 60 Тб. Ну и, конечно, Toshiba.
Добро пожаловать в новый мир, мир терабайтных микросхем. И что-то мне подсказывает, что скоро будет анонсирован новый iPhone с терабайтом памяти на борту.
Станислав Корб, ©2018