Лаборатория восстановления данных в Бишкеке: подход к оснащению

Оснащение лаборатории восстановления данных – дело, которое должно производиться на постоянной основе. Один из важных моментов – это приобретение различных адаптеров и переходников, позволяющих подключить к нашему оборудованию любое устройство. Этому мы уделяем постоянное внимание, отслеживая появление новых устройств, новых типов соединений, новых стандартов. В нашей лаборатории имеется два важных списка: входящие соединения и имеющиеся соединения.

Входящие соединения – это спиcок, в который включаются все перспективные типы коннекторов, на которые нам нужно приобрести адаптер или переходник. Недавно в него добавился новый коннектор для SSD дисков – NF1. Пока ни один производитель не предлагает такого адаптера, но как только он появится в продаже, мы его немедленно приобретем.

Имеющиеся соединения – это те типы адаптеров и переходников, которые уже приобретены для нашей лаборатории. Как вы можете видеть на фотографиях, каждый адаптер или переходник должным образом промаркирован, и мы точно знаем, с каким устройством и какой переходник нам использовать.

В чем преимущество использования переходников? Почему мы уделяем этому так много внимания и инвестируем в это наши средства?

Все очень просто. Конечно, можно взять спецификацию коннектора и, припаяв необходимые провода, создать временное соединение для вычитывания данных. Однако у такого метода работы есть четыре очень важных минуса:

1) Возможность совершить ошибку и, как результат, электрически сжечь устройство. От ошибок не застрахован абсолютно никто, и их происхождение бывает различным, начиная от банальной невнимательности (к примеру, когда специалиста отвлекли во время работы) и заканчивая неправильной интерпретацией цвета провода (так, я припаял сюда коричневый провод, значит, и сюда нужно коричневый; а по факту у вас темно-коричневый и светло-коричневый проводники, и перепутав их, вместо 5 вольт вы подали на схему 12 – итог плачевен).

2) Паразитные токи. При работе с проводниками большой длины (а для современных высокочастотных соединений большой длиной может оказаться уже 5 – 6 см) возникают паразитные токи, которые будут искажать проходящие сигналы и продуцировать ошибки. Это неизбежно приведет к неправильной интерпретации приходящих на интерфейс данных и, как следствие – к большому количеству некорректируемых ошибок. При этом само устройство будет работать прекрасно и ошибок продуцировать не будет.

3) Малая оперативность. Для организации соединения напайкой проводников требуется время, иногда – довольно значительное, что негативно сказывается на общем времени проведения работ. Среднее время, за которое специалист, не знакомый со спецификациями коннектора, может организовать соединение методом напайки проводников, составляет примерно 1 – 2 часа. При использовании адаптера время организации соединения составит 10 – 15 секунд. И нам не придется каждый раз тратить драгоценное время для того, чтобы напаяться на разъем и получить доступ к данным, мы сделаем это быстро, безопасно и очень качественно.

4) Гарантийный обмен. Следы пайки, конечно, можно скрыть, особенно если паяет профессионал. Но скрыть их полностью все равно не получится, и дотошный гарантийный отдел их обязательно увидит и гарантированно откажет вам в гарантии (простите за каламбур). Другое дело – адаптер. Вы включаете накопитель в его штатный разъем, без каких-либо изменений для самого устройства, и совершенно спокойно, после завершения всех работ, можете обменять его по гарантии.

Станислав Корб, ©2018

КАК «КИПИТ» ЧИП

Наверное, вы неоднократно слышали такое выражение – «кипит чип». Это означает, что какая-то микросхем на плате электроники очень быстро и очень сильно нагревается. Как сильно и как быстро?

Для примера возьмем жесткий диск Maxtor емкостью 80 Гбайт с неисправной платой – у него как раз «кипит» чип VCM & Motor driver (микросхема управления звуковой катушкой и шпиндельным двигателем). Подаем на диск питание и меряем температуру микросхемы лазерным термометром: 155 градусов! Меряем снова – 165! Прикладывать палец к микросхеме не советую – ожог второй, а то и третьей степени будет точно обеспечен.

Насколько быстро нагревается чип? Ставим секундомер, запускаем диск. До 150 градусов – меньше чем за 1 секунду. Еще раз – результат тот же. Нагрев происходит практически мгновенно.

О чем это говорит? Очевидно, в «кипящей» микросхеме произошло короткое замыкание, и когда производится подача электропитания, в месте замыкания происходит локальный нагрев, который мы и наблюдаем. Выгорания места короткого замыкания не происходит, так как чип закрыт компаундом и для того, чтобы его прожечь, нужна довольно приличная мощность. Кстати, прожженые чипы (микросхемы с дырками) – отнюдь не редкость, но и они также хорошо греются (хотя и не так сильно, как микросхемы без дырок).

Обычно при «кипящих» чипах ремонт платы электроники накопителя нецелесообразен или даже невозможен – либо это получается слишком дорого, либо невозможно (вышедший из строя чип «утягивает» за собой еще какие-то элементы платы или даже головки). Мы практикуем замену неисправной платы электроники на аналогичную с переносом необходимых настроек из «больной» платы на здоровую. Если головки не пострадали, этого обычно хватает для того, чтобы диск начал функционировать нормально и позволил забрать данные.

Станислав Корб, ©2018



Мы принимаем к оплате | We accept payments


Мы стажировались и работали в странах | We worked or practiced in following countries