Лаборатория восстановления данных в Бишкеке: подход к оснащению

Оснащение лаборатории восстановления данных – дело, которое должно производиться на постоянной основе. Один из важных моментов – это приобретение различных адаптеров и переходников, позволяющих подключить к нашему оборудованию любое устройство. Этому мы уделяем постоянное внимание, отслеживая появление новых устройств, новых типов соединений, новых стандартов. В нашей лаборатории имеется два важных списка: входящие соединения и имеющиеся соединения.

Входящие соединения – это спиcок, в который включаются все перспективные типы коннекторов, на которые нам нужно приобрести адаптер или переходник. Недавно в него добавился новый коннектор для SSD дисков – NF1. Пока ни один производитель не предлагает такого адаптера, но как только он появится в продаже, мы его немедленно приобретем.

Имеющиеся соединения – это те типы адаптеров и переходников, которые уже приобретены для нашей лаборатории. Как вы можете видеть на фотографиях, каждый адаптер или переходник должным образом промаркирован, и мы точно знаем, с каким устройством и какой переходник нам использовать.

В чем преимущество использования переходников? Почему мы уделяем этому так много внимания и инвестируем в это наши средства?

Все очень просто. Конечно, можно взять спецификацию коннектора и, припаяв необходимые провода, создать временное соединение для вычитывания данных. Однако у такого метода работы есть четыре очень важных минуса:

1) Возможность совершить ошибку и, как результат, электрически сжечь устройство. От ошибок не застрахован абсолютно никто, и их происхождение бывает различным, начиная от банальной невнимательности (к примеру, когда специалиста отвлекли во время работы) и заканчивая неправильной интерпретацией цвета провода (так, я припаял сюда коричневый провод, значит, и сюда нужно коричневый; а по факту у вас темно-коричневый и светло-коричневый проводники, и перепутав их, вместо 5 вольт вы подали на схему 12 – итог плачевен).

2) Паразитные токи. При работе с проводниками большой длины (а для современных высокочастотных соединений большой длиной может оказаться уже 5 – 6 см) возникают паразитные токи, которые будут искажать проходящие сигналы и продуцировать ошибки. Это неизбежно приведет к неправильной интерпретации приходящих на интерфейс данных и, как следствие – к большому количеству некорректируемых ошибок. При этом само устройство будет работать прекрасно и ошибок продуцировать не будет.

3) Малая оперативность. Для организации соединения напайкой проводников требуется время, иногда – довольно значительное, что негативно сказывается на общем времени проведения работ. Среднее время, за которое специалист, не знакомый со спецификациями коннектора, может организовать соединение методом напайки проводников, составляет примерно 1 – 2 часа. При использовании адаптера время организации соединения составит 10 – 15 секунд. И нам не придется каждый раз тратить драгоценное время для того, чтобы напаяться на разъем и получить доступ к данным, мы сделаем это быстро, безопасно и очень качественно.

4) Гарантийный обмен. Следы пайки, конечно, можно скрыть, особенно если паяет профессионал. Но скрыть их полностью все равно не получится, и дотошный гарантийный отдел их обязательно увидит и гарантированно откажет вам в гарантии (простите за каламбур). Другое дело – адаптер. Вы включаете накопитель в его штатный разъем, без каких-либо изменений для самого устройства, и совершенно спокойно, после завершения всех работ, можете обменять его по гарантии.

Станислав Корб, ©2018

TOSHIBA MQ01ABD075: ВОССТАНОВИТЬ ДАННЫЕ С ЖЕСТКОГО ДИСКА

Задача. Восстановить данные с жесткого диска Toshiba MQ01ABD075

Описание проблемы. Накопитель поступил в работу с посторонники звуками из гермозоны (стук, щелчки).

Результаты диагностики. Для диагностики накопителя проверены плата электроники (методом установки заведомо исправной); обнаружено, что оригинальная плата электроники исправна. Произведено исследование гермоблока накопителя в чистой зоне (класс 100); обнаружено, что верхняя головка неисправного накопителя в блоке магнитных головок (БМГ) сорвана. Требуется замена головок.

Необходимые для восстановления информации процедуры.

1) Подбор и адаптация донорского устройства.

2) Замена блока магнитных головок.

3) Запуск накопителя в технологическом режиме.

4) Подготовка накопителя к вычитыванию данных.

5) Вычитываение накопителя в технологиеском режиме.

6) Извлечение данных из полученного образа.

Результат.

Данные восстановлены с минимальными (менее 1%) потерями.

Особенности накопителя.

Диски Toshiba линейки АBD не имеют каких-либо существенных отличий от других дисков форм-фактора 2.5 дюйма этого производителя.

Уничтожение данных: как сделать правильно и безвозвратно?

Уничтожение данных – важная проблема современного IT-сообщества. Ситуации, при которых может потребоваться полное и безвозвратное уничтожение данных, различны, и не будут нами здесь обсуждаться. Мы поговорим о том, как можно уничтожить данные с различных типов носителей.

1. Флеш-накопители

В различных флеш-накопителях носителем информации является чип флеш-памяти, или несколько таких чипов. Как правило, они работают под управлением контроллера – микросхемы, организующей логическое транслирование банков и страниц памяти для оперционной системы. Надежно уничтожить данные с флеш-накопителя возможно следующими способами

— Стирание накопителя. Физически реализуется как запись определенного паттерна в каждый сектор такого носителя. При этом восстановление данных абсолютно невозможно. Реализовать можно как коммерческим, так и свободно распространяемым ПО (MHDD, Victoria и т.д.) для тестирования накопителей данных.

— Термическое воздействие на чип памяти. Микросхемы флеш-памяти весьма чувствительны к воздействию высоких температур. При нагревании их до 370° С в течение 2 минут внутри таких микросхем могут появляться bad blocks (нечитаемые сектора), нагревание до 400° С в течение 2 минут обязательно приведет к появлению таких секторов, нагревание свыше 500°С за тот же период времени может разрушить уже значительную часть секторов (а следовательно, и данных). Сжигание, таким образом, надежно уничтожит данные с такого устройства.

— Микроволновая деструкция. Чипы памяти флеш-устройств включают в себя большое число металлических элементов. Помещение их в интенсивное микроволновое излучение приведет к многочисленным разрушениям этих элементов, что сделает чип памяти абсолютно непригодным к эксплуатации. Оптимальным вариантом такого уничтожения данных являются направленные микроволновые излучатели, однако можно использовать и обычную бытовую микроволновую печь – при этом вы должны осознавать, что последняя может выйти из строя в результате ваших экспериментов.

— Механическое разрушение. Возможно, как и для любого другого устройства. Однако не всегда применимо в силу того, что требуется достаточно сильное механическое воздействие для того, чтобы физически разрушить чип памяти.

Мгновенное и гарантированное разрушение данных с флеш-устройств возможно только с использованием микроволнового излучения. Все остальные методы требуют определенного времени.

2. Оптические носители

Оптические носители (CD, DVD, BD) – один из самых удобных вариантов для уничтожения данных, так как имеют определенное количество слабых мест, делающих уничтожение данных быстрой и дешевой процедурой.

— Механическое разрушение. Возможно как просто переломить диск пополам (практически моментально; однако при этом возникает риск того, что диск лопнет, и от него отлетят осколки, которые могут вас ранить, поэтому настоятельно рекомендую ломать диски в защитных перчатках или рукавицах и с защитными очками на глазах), так и зацарапать его снизу (со стороны подложки; метод не слишком надежен, так как данные при этом не уничтожаются, после полировки зацарапанной поверхности их можно снова считать) или сверху (гарантированное уничтожение данных, так как царапая диск сверху, вы уничтожаете слой, несущий данные).

— Термическое воздействие. Оптические носители сделаны из легко плавящегося и горючего пластика. Нагревая их, мы надежно уничтожаем данные.

— Чувствительность к агрессивным веществам. Кислоты и щелочи, а также обычные органические растворители (ацетон, этилацетат и т.п.) крайне негативно воздействуют на пластик, из которого делаются оптические носители – вплоть до полного его растворения. Естественно, данные после такого воздействия восстановить уже не получится.

3. Дискеты

Едва ли не самые слабые в отношении надежности носители информации. Уничтожение данных с них не представляет никакого труда

— Стирание накопителя. Заполнение всех его секторов определенным паттерном. Возможно при помощи свободно-распространяемого ПО (Victoria и т.п.).

— Механическое разрушение носителя информации. Любая дискета – это пластиковый диск с магнитным напылением, заключенный в пластиковый же корпус. Достаточно легкого механического воздействия, чтобы разрушить корпус и извлечь магнитный диск, который можно порвать, после чего считать с него данные будет уже невозможно.

— Температурные воздействия. Пластик корпуса и магнитного диска дискеты горюч и плавок. Достаточно кратковременного воздействия высокими температурами для того, чтобы магнитный носитель расплавился или размагнитился.

— Агрессивные среды. Любой сильный растворитель (ацетон, эфир, хлороформ, этилацетат и т.п.) полностью разрушит магнитный носитель в дискете за считанные секунды. То же самое относится и к кислотам.

— Размагничивание. Возможно с использованием как специализированных устройств (дегауссеров), так и посредством обычного (но достаточно сильного) магнита.

4. Накопители на жестких магнитных дисках (НЖМД)

Наиболее распространенный тип носителей информации. Уничтожение данных возможно как стиранием с использованием специализированного ПО, так и различными типами механического воздействия.

— Стирание. Реализуется несколькими способами. Наиболее распространенным способом является запись определенного паттерна в сектора накопителя с использованием специализированного ПО (MHDD, Victoria и т.п.). Меньше распространено стирание накопителей посредством команды Security Erase, поддерживаемой всеми без исключения НЖМД. Основной недостаток такого способа уничтожения данных – для накопителей большой емкости оно займет немало времени (до нескольких часов).

— Физическое разрушение пластин. Обычно реализуется посредством пробивания накопителя металлическим штырем или просверливания накопителя насквозь.

— Физическое разрушение накопителя сильным ударом во время работы накопителя. Как правило, приводит к незамедлительному смещению осей шпинделя и БМГ и к полному или частичному разрушению внутренних узлов НЖМД. Достоинство: очень быстрый способ уничтожения данных. Недостаток: не является абсолютно надежным методом уничтожения данных, накопитель может пережить даже очень сильное механическое воздействие (хотя это случается и не часто).

— Полное размагничивание накопителя. Осуществляется посредством специальных машин (дегауссеров), подающих на накопитель сильный магнитный импульс. Происходит полное размагничивание пластин с полной потерей служебной и пользовательской информации.

— Термическое воздействие (нагревание). При определенной температуре нагревания ферромагнетики теряют магнитные свойства, данные полностью теряются. Недостатком является необходимость нагреть накопитель достаточно сильно: накопитель необходимо прогреть, так как пластины расположены внутри гермоблока в воздушной среде. Этого нельзя сделать быстро.

Таким образом, наиболее быстрыми и недорогими способами уничтожения данных с современных накопителей являются: размагничивание дегауссером (НЖМД; применимо также и для дискет) и механическое разрушение. Например, в одной из российских компаний имелся специально нанятый охранник с боевым пистолетом, единственной функцией которого было сделать несколько выстрелов в черный кружок, нарисованный на корпусе сервера; за этим кружком располагались НЖМД – таким образом, выстрелы должны были разрушить накопители и сделать невозможным восстановление с них данных. Можно сказать, что такой способ удаления данных достаточно экзотичен, хотя по тому же принципу организованы механические устройства уничтожения данных на базе пиропатрона, осуществляющего при детонации резкий удар по НЖМД посредством заостренного металлического штыря.

Естественно, что после уничтожения данных таким образом использование самого устройства становится невозможным: устройство физически разрушается. Если вы планируете использовать устройство после уничтожения данных, наиболее правильным будет стирание.

Наша компания оказывает услуги по профессиональному уничтожению данных с любых типов носителей любым способом.

Станислав Корб, ©2018

Краткий словарь для общения со специалистами по восстановлению данных

Иногда сложно понять, о чем с вами разговаривает специалист, которому вы отнесли свой диск для восстановления данных. Действительно, как понять фразу специалиста «В этой банке головы залипли» или «Тут без донора никак, комут сгорел»? Ну а если специалист будет использовать строгую профессиональную терминологию, то тут вообще можно потеряться: «Вы знаете, магнитные пластины Вашего накопителя подверглись сильному перегреву, что привело к возникновению отклонений в параметрах чтения-записи, которые выходят за допуски адаптивных таблиц», или «Модуль транслятора вашего диска во время последней сессии произвел запись с инверсией одного байта в заголовке, поэтому доступа к пользовательской зоне диск в штатном режиме не предоставляет».

Я подготовил краткий словарь, в котором приведены большинство используемых специалистом терминов. Пусть общение станет легким =).

Адаптивные параметры (адаптивы) – уникальные настройки микропрограммы накопителя, позволяющие ему нормально работать; диск может вообще не стартовать, если у него неправильные адаптивы.

Аппаратный сбой – неисправность, вызванная проблемами с аппаратной частью устройства.

Внешний диск – диск, который не стоит внутри компьютера; обычно используется для переноски информации.

Внутренний диск – диск, который стоит внутри компьютера.

Восстановление данных (восстановление информации) – совокупность действий по извлечению данных из неисправного устройства.

Гермоблок (гермозона диска, банка) – герметичная металлическая коробка, внутри которой установлены блины, головки и другие запчасти жесткого диска.

Головка (иголка, БМГ, HDA) – маленький кусок пластика на длинном металлическом кронштейне с запрессованной катушкой индуктивности, которым записываются и считываются ваши данные с блинов.

Дефект-листы – списки плохих мест на поверхности вашего диска, которые диск не будет использовать во время работы.

Диагностика – определение неисправности диска и того, сколько будет стоить восстановление данных.

Дискета – плоская, квадратная, хранит данные, но не влазит в телефон или фотоаппарат; некоторые называют так внешний жесткий диск.

Дисковый массив (RAID) – несколько дисков объединены в один или для увеличения производительности, или для увеличения надежности хранения данных, или и для того, и для другого.

Донор (донорское устройство) – жесткий диск, флешка или вообще все что угодно, откуда мы достанем запчасти для неисправного устройства.

Жесткий диск (жесткий, НЖМД, HDD) – устройство, представляющее банку с платой электроники снаружи и круглыми магнитными пластинами внутри, на которых записана информация.

Залип (клин головок, head stack) – неприятный момент, когда головка не успела уйти в парковочную зону диска и осталась на его поверхности, при этом диск не может раскрутиться.

Залипанец – диск, у которого диагностирован залип.

Залитик – устройство, на которое была пролита вода или другая жидкость, что привело к тому, что оно перестало работать.

Запил (царапка, царапина, коцка) – физическое повреждение поверхности блина.

Запчасти (запасные части) – то, что нужно заменить в вашем диске и имеется в исправном состоянии в доноре.

Интерфейс – разъем, через который вы подключаете диск к компьютеру.

Карта памяти – плоская, квадратная, ставится в телефон или фотоаппарат и хранит данные.

Клин шпинделя (клин двигателя, motor stack) – заклинивание электромотора, который крутит блины, при этом блины или совсем не раскручиваются, или крутятся с большим трудом.

Коммутатор-предусилитель (комут, коммутатор) – микросхема в банке, обеспечивающая нормальную работу головок.

Конфигурация массива – принципиально важный набор характеристик, без которых невозможно восстановление данных с дискового массива. Обычно включает в себя: порядок дисков, размер страйпа (порции данных), смещения, тип контроля четности.

Логическая адресация дискового пространства (LBA) – представление пространства диска как непрерывного набора секторов со сквозной нумерацией от 0 до конца.

Логическая неисправность – диск работает нормально, но данные недоступны (например, в результате форматирования, удаления файла, шифрования и т.д.).

Магнитная пластина (поверхность, блин) – круглый кусок стекла или металла с нанесенным на него ферромагнитным слоем, который ставится внутрь банки для записи ваших данных.

Микропрограмма (варь, фирмварь, firmware) – служебная информация вашего устройства, благодаря которой устройство функционирует.

Модуль служебной информации – кусок служебки, имеющий определенное назначение.

Монолит – флешка, в которой микросхема памяти спрятана в слое пластика и не может быть выпаяна отдельно.

Неисправность БМГ (неисправность головок, мертвые головы) – тот случай, когда точно без запчастей не обойтись; головки разрушены, повреждены, не могут прочитать информацию и необходима их замена.

Носитель данных (накопитель) – любое устройство, где хранятся ваши данные.

Парковка головок – вывод головок из рабочей зоны диска на то время, пока он не работает. Совершается или в парковочную зону, или на парковочную рампу.

Парковочная зона (парковка) – та часть диска, в которой головки находятся, когда диск не включен.

Парковочная рампа (парковочная рама, парковка) – фигурный кусок пластика вне блинов, на котором головки находятся, когда диск не работает.

Перенос магнитных пластин – извлечение блинов из гермоблока, в котором их чтение невозможно (клин двигателя, искривление осей и т.п.), и установка их в гермоблок с заведомо исправными узлами для вычитывания данных.

ПЗУ (ПЗУха, флешка) – микросхема, на которой хранится часть служебной информации вашего устройства.

Плата электроники (плата, контроллер) – кусок текстолита с напаянными на него электронными компонентами.

Пользовательская зона накопителя – дисковое пространство, доступное пользователю для записи данных.

Программный сбой – неисправность, вызванная проблемами с программным обеспечением.

Сектор – кусок данных на поверхности диска, имеющий определенный размер (обычно 512 байт) и структуру (заголовок – тело – окончание).

Служебная зона (служебка) – участок поверхности диска, где хранится микропрограмма.

Страйп – порция данных, которая записывается на диск – участник дискового массива. Обычно размер страйпа указывается в секторах стандартного (512 байт) размера.

Съемники головок – небольшие металлические или пластиковые инструменты, с помощью которых головки безопасно вынимаются из жесткого диска и устанавливаются обратно.

Твердотельный диск (SSD) – коробка с платой электроники или просто плата электроники, на которой напаяны NAND-микросхемы, внутри которых записана информация.

Технологический режим работы – режим работы накопителя, при котором обеспечивается доступ к его скрытым функциям (работа с модулями служебной зоны, изменение модели диска, емкости и т.п.).

Транслятор (подсистема трансляции) – модуль служебной информации, который обеспечивает перевод физической адресации дискового пространства устройства в логическую адресацию дискового пространства операционной системы.

Трек – расположенные на поверхности в один ряд по кругу сектора жесткого диска, дискеты или CD-DVD-BD.

Физическая адресация дискового пространства (PBA, ABA и т.д.) – то, как сектора или другие единицы хранения данных расположены в устройстве на физическом уровне (обычно – номер блока на треке по определенной головке с учетом или без учета дефектных секторов по той же головке).

Физическая неисправность – диск не работает нормально (не крутится, не определяется, не читается и т.п.).

Флешка – любое устройство, в котором используются NAND-микросхемы; некоторые так называют внешний жесткий диск или вообще любое устройство для переноски информации.

Шпиндельный двигатель (шпиндель) – электромотор с широкой металлической осью, на котором внутри банки крутятся блины.

Штатный режим работы – режим работы накопителя, при котором работают только его потребительские функции.

CD, DVD, BD – круглые блестящие пластиковые пластины с дыркой посередине, используемые для записи данных с помощью лазерного луча; часто используются на огороде для отпугивания птиц.

G-List (глист) – список плохих мест диска, которые образовались после выпуска диска с завода.

JBOD – простое объединение нескольких дисков в один по порядку друг за другом.

NAND-микросхема (нандина, микросхема памяти) – та самая микросхема, на которой хранится информация во флешках, SSD и картах памяти.

PATA – интерфейс, у которого шлейф для данных имеет 40 контактов, а разъем питания имеет 4 контакта.

P-List (плист) – список плохих мест диска, обнаруженных на заводе-изготовителе.

RAID-0 (страйп) – дисковый массив, в котором данные делятся на порции (stripe, страйп), и эти порции последовательно записываются на диски массива. Высокая скорость, но нет защиты от аппаратных сбоев.

RAID-1 (зеркало) – дисковый массив, в котором одни и те же данные одновременно записываются на несколько дисков. Стандартная скорость, средняя степень защиты от аппаратных сбоев.

RAID-5 (массив с контролем четности) – дисковый массив, в котором данные делятся на порции (страйпы), в которых с равными промежутками имеется порция для восстановления данных. Позволяет массиву нормально работать при потере одного диска. Относительно высокая скорость и неплохая степень защиты от аппаратных сбоев.

RAID-6 (массив с контролем четности и кодом Рида-Соломона) — дисковый массив, в котором данные делятся на порции (страйпы), в которых с равными промежутками имеется две порции для восстановления данных. Позволяет массиву нормально работать при потере двух дисков. Средняя скорость работы и высокая степень защиты данных от аппаратных сбоев.

SATA – интерфейс, у которого шлейф для данных имеет 7 контактов, а разъем питания – 15.

USB, Thunderbolt – плоский интерфейс, у которого нет отдельного разъема для питания.

Моей целью не было составление полного списка используемой специалистами терминологии – да это и не нужно; хотелось, чтобы большая часть терминов, которые проскакивают в разговоре с инженером совершенно естественно (для инженера, конечно) была вам, дорогие читатели, понятна, и не казалась китайской грамотой. Поэтому прошу прощения за серьезное упрощение трактовки некоторых из них: главное, чтобы верно была передана суть явления или определения, ну а технические подробности оного, если у вас возникнет желание про них узнать, вы всегда можете посмотреть в Интернете =).

Станислав Корб, ©2018

TOSHIBA DT01ACA100: ВОССТАНОВИТЬ ДАННЫЕ С ЖЕСТКОГО ДИСКА

Задача. Восстановить данные с жесткого диска Toshiba DT01ACA100

Описание проблемы. Накопитель поступил в работу с посторонники звуками из гермозоны (стук, щелчки).

Результаты диагностики. Для диагностики накопителя проверены плата электроники (методом установки заведомо исправной); обнаружено, что оригинальная плата электроники исправна. Произведено исследование гермоблока накопителя в чистой зоне (класс 100); обнаружено, что верхняя головка неисправного накопителя в блоке магнитных головок (БМГ) сорвана. Требуется замена головок.

Необходимые для восстановления информации процедуры.

1) Подбор и адаптация донорского устройства.

2) Замена блока магнитных головок.

3) Запуск накопителя в технологическом режиме.

4) Подготовка накопителя к вычитыванию данных.

5) Вычитываение накопителя в технологиеском режиме.

6) Извлечение данных из полученного образа.

Результат.

Данные восстановлены полностью.

Особенности накопителя.

Диски Toshiba бюджетной линейки АСА имеют очень аскетичный внутренний дизайн: небольшой магнит прямоугольной формы, простой пластиковый ограничитель, маленькие шурупы, одношурупная система крепления пакета магнитных пластин, и т.п. При таком исполнении гермозоны эти диски имеют весьма ограниченный срок службы и не отличаются большой надежностью.



Мы принимаем к оплате | We accept payments


Мы стажировались и работали в странах | We worked or practiced in following countries