Насколько защищены «стойкие» внешние жесткие диски?

Последнее время участились случаи обращения за восстановлением данных с внешних жестких дисков, которым откровенно досталось на орехи: стукнутые, падавшие, попавшие под машину, утопленные, заваленные бытовым мусором и т.п. Пользователь свято верит в написанное на коробке: RESISTANT! Чего там он resistant? О, ну конечно! Schock-resistant – сопротивляется шоку. Press-resistant – сопротивляется сжатию. Rain-resistant – сопротивляется дождю. И так далее и тому подобное.

Хорошо, скажете вы. Ведь производитель не просто так пишет на коробке со своим товаром, что он может сопротивляться тому, о чем он пишет. Хе-хе, конечно же не просто так. Основная цель проста, как летний зной: привлечь покупателя. Можно капнуть на корпус диска пару капель воды? Все, он уже rain-resistant. Никто же не обещает, что диск выдержит тропический тайфун, но легкий летний дождичек – вполне. Хотя и тут надо быть настороже – пара капель воды в разъеме вполне могут привести к неприятным и даже фатальным последствиям. Поэтому дождичком диск желательно все-таки не тестировать.

Или вот сжатие. На коробочке написано, что на диск можно давить сверху аж до 1 тонны, только возникает вопрос: как? Поставленный на грань, или лежащий плашмя? На бетонном полу или на песочке? Наехать медленно или быстро? Все это важно. Конечно, наезд автомобиля на большой скорости на асфальте диск не переживет. Скорее всего, после такого наезда мы увидим в результате небольшой плоский блин, которым до этого был ваш внешний жесткий диск. Ну или многочисленные кусочки оного, разбросанные в радиусе наезда. А вот если положить диск на мягкий песок, да проехать по нему аккуратно на мягкой зимней резине, то, скорее всего, такой диск останется в прекрасном состоянии и будет работать и дальше. Но при этом если наступить на него ногой – то может и не выдержать. Такая вот физика.

Продолжим. Сопротивление ударам (shock-resistant). О да, это самая веселая часть марлезонского балета. Тут масса условностей, гораздо больше, чем с давлением: и состояние диска (включен и читает, включен но запаркован, выключен, переведен в состояние сна, и т.п.), и положение диска во время удара (боком, плашмя, углом и т.п.), и был ли во время удара подключен кабель (он заметно снижает скорость падения, особенно если его пытаться судорожно поймать), и так далее. При каких условиях тестировалось сопротивление удару именно вашей модели диска – неведомо, но практически наверняка эти условия были совершенно щадящими.

Так что, совсем не верить производителю – спросите вы? Нет, ну отчего же… Верить, но относиться скептически и думать логически. Скептически вообще нужно относиться ко всему, что может идти вразрез с очевидностью. В нашем случае – это ударостойкость жестких дисков. Десятилетиями нас учили, что жесткий диск – хрупкое и очень ранимое устройство. И вдруг нам ломают стереотипы – оказывается, жесткому диску никакие удары нипочем, его можно бить, кидать и вообще под танк подкладывать. Где-то тут явно что-то не так.

Не, ну а может там, внутри коробки внешнего жесткого диска, супер-пупер хитрые системы поглощения ударов, титановые ребра и генератор антигравитации? Ага, точно. И смазка из жира единорога. Увы, но практика показывает, что вся антишоковая защита внутри коробки рядового внешнего жесткого диска – это две прокладки из вовсе не абсорбирующего шок материала (обычно это простая фольга пополам с полиэтиленом) снизу и сверху да резиновые нашлепки на головках болтов, которые вкручены в монтажные отверстия жесткого диска. Такая «защита» обеспечит легкое поглощение слабого удара – и не более того.

А с чем приходится встречаться диску? Из моего опыта: диск выпал из окна автомобиля на полном ходу во время копирования данных (для чего его было нужно держать прям у окна? хотя о чем это я…); диск кинули на диван, но слегка промахнулись и он улетел немного дальше (в окно); диск упал со стола, снесенный во время уборки/перемещения/работы; и т.п. Разнообразие ситуаций, при которых диску может достаться по полной программе, весьма велико. Но наиболее странными лично для меня выглядят вот эти: кинуть диск на диван/стол/стул; сесть/встать/прыгнуть на диск; подвесить диск за USB-кабель с последующим выскакиванием разъема из гнезда и падением диска (бывает, что и с весьма не хилой высоты); таскание диска в кармане с ударами по карману; перекидывание и перекладывание диска во время работы. Ну и всякие другие физические воздействия, которые хозяин производит со своим внешним жестким диском, находясь в трезвом рассудке и доброй памяти, а то и в нетрезвом состоянии.

Давайте расставим над «ё» все точки. Внешний жесткий диск – не то устройство, которое легко и непринужденно выдерживает падения и удары. Внутри в общем-то тесной (для обеспечения компактности, вестимо) коробочки – не важно, из какого материала она сделана – в 99.9% случаев находится обычный ноутбучный жесткий диск. Не специально спроектированный для того, чтобы выдерживать удары и вибрации, как в компьютерах некоторых автомобилей, а именно обычный ноутбучный жесткий диск. Почему не специально спроектированный? Это тема отдельной статьи, и я обязательно ее как-нибудь коснусь.

Так вот. Обычный ноутбучный жесткий диск – это простое устройство с двумя движущимися узлами: пакетом магнитных пластин (в свою очередь, состоящим из собственно пластин и шпиндельного двигателя, на который они надеты) и блоком магнитных головок (тут структура еще сложнее: кроме собственно головок, крепящихся на кронштейны посредством слайдеров, на оси блока магнитных головок крепятся микросхема коммутатора-предусилителя, выполняющая функции подключения магнитных головок к схемотехнике жесткого диска и предварительного усиления сигналов головок, и звуковая катушка, или катушка актуатора, обеспечивающая вкупе с магнитами движение и позиционирование блока магнитных головок).

В жестком диске движущиеся узлы – наиболее уязвимы. Давайте на секунду представим, что падает жесткий диск. В момент удара все его части испытывают определенную перегрузку, прямо пропорциональную его массе – то есть чем диск тяжелее, тем перегрузка больше. Определенные перегрузки диск может выдержать без последствий, так как он на них рассчитан. Но перегрузки больше расчетных – уже проблема. А ведь удар может быть очень сильным – общеизвестно, что сила удара будет зависеть не только от массы предмета, но и от высоты, с которой он упал. Упал с сантиметра – почти и не ударился. Упал с метра – переломал половину узлов.

Итак, падает жесткий диск. Магнитные пластины, которые находятся на шпинделе, сделаны в современных НЖМД из стекла, а значит – тяжелые. При падении они обязательно окажут воздействие на ось шпинделя – и чем сильнее удар, тем больше будет это воздействие. У них тоже есть инерция, и они будут воздействовать на ось самостоятельно, несмотря на то, что являются частью общей конструкции. Чем это грозит? Искривлением оси шпинделя или даже повреждением мотора. В исключительных случаях, когда сила удара исключительно велика, магнитные пластины разрушаются – мы ведь помним. что они сделаны из стекла.

Да, но это не единственная беда. Блок магнитных головок хотя и не такой тяжелый, но все же тоже обладает массой, к тому же – имеет эластичные слайдеры с расположенными на концах средоточиями массы (пластиково-керамическими MR-элементами головок). При ударе эти части также пострадают. Нам приходилось видеть всякое, от полного разрушения MR-элементов в результате соударения или перескакивания головок из одного парковочного паза в соседний, до деформации слайдера и его поводков.

Ну а уж говорить о том, что от удара может отколоться часть платы электроники; отвалиться плохо припаянный электронный компонент (да-да, мы  такое видали), появиться микротрещины в корпусе или на плате, и тому подобная экзотика – вообще не приходится. Это все происходит, и происходит регулярно.

Поэтому мы очень настойчиво рекомендуем: с внешним жестким диском надо обращаться нежно, как с первой любовью.  Он раним и хрупок, как майская роза, и для того, чтобы его не повредить – а уж тем более, не убить – требуется соблюдение двух простых правил: не бросать и не ронять.

Станислав К. Корб © 2019

Toshiba MK2565GSX: восстановить данные с жесткого диска

Задача. Восстановить данные с жесткого диска Toshiba MK2565GSX

Описание проблемы. Накопитель поступил с жалобой на невозможность скопировать файлы.

Результаты диагностики. Диагностика проведена с использованием ПАК РС-3000. Обнаружено большое количество дефектов поверхности.

Необходимые для восстановления информации процедуры.

1) Вычитывание накопителя в файл-образ с интеллектуальной обработкой дефектных секторов.

Результат.

Данные восстановлены c потерями около 15%.

Особенности заказа.

Обработка дефектных секторов как правило занимает много времени. В этом случае заказ вычитывался почти неделю.

Телефон заблокирован: FRP. Что это такое и как с этим бороться.

Введение

До июня 2014 года украсть телефон на базе ОС Android было гораздо проще, чем сейчас. Хотя и сейчас украсть Android-телефон намного проще, чем iPhone или iPad, но все же… Просто до 2014 года в этой системе не было жесткой и хорошо продуманной системы защиты от несанкционированного использования чужого устройства. Будучи единожды проданным, по сути оно не было привязано к единственному владельцу, как это с самого начала было сделано в iOS. Действительно, политика смены владельца устройства Apple крайне проста: это возможно только в том случае, если владелец устройства сам передаст его вам, при этом удалив на своем устройстве все данные и отвязав его от своего Apple ID. Для Android все было намного проще: завладев аппаратом, можно сделать его сброс на заводские настройки (factory reset), после чего настроить под себя и начать использовать.

Оболочка EMUI, Android 8, аппарат Huawei Honor 7C

Шоколадно, не так ли?

Но в июне 2014 года народу была представлена новая операционка от Android под кодовым названием Lollipop, в которой оказалась реализована система защиты FRP: factory reset protection (защита от сброса до заводских настроек). В чем ее основная суть?

При первоначальной настройке телефона вы привязываете его к какому-либо аккаунту электронной почты – примерно также, как у Apple ID. По умолчанию (и это понятно, ведь андроид – продукт Google) используется почтовый сервис gmail корпорации Google. Если у вас нет аккаунта Google, при первом старте Android-устройства вам будет предложено его создать.

После того, как вы полностью проинициализировали свой телефон, он привязывается к настроенному аккаунту, что называется, намертво. Аккаунт можно изменить, привязав телефон к другому – но это делает настолько мало народа, что этим можно пренебречь.

Итак, вы настроили аккаунт и стали пользоваться аппаратом. И тут – о горе – телефон был утерян или его украли. Как правило, большинство пользователей блокируют экран или пин-кодом, или графическим ключом, или отпечатком пальца. Такую защиту почти невозможно обойти или взломать; нашедшему телефон или злоумышленнику не остается ничего другого, как выполнить factory reset. Что он и делает. И вот тут его поджидает FRP…

После выполнения сброса от пользователя потребуют повторить вход в связанный с телефоном аккаунт Google. Создать новый аккаунт будет невозможно: только вход в уже имеющийся, привязанный к устройству. Если вход выполняется с ошибками или не выполняется, телефон блокируется. В зависимости от производителя, блокировка может иметь разный вид: начиная от невозможности нормального старта аппарата (выход только на консоль восстановления) и заканчивая стартом аппарата, но блокировкой функционирования всех приложений (обычно при попытке тапнуть по приложению, выдается сообщение «Приложение не установлено»). Пользоваться таким устройством невозможно, новые попытки сброса заблокированы. Что-то сделать с телефоном можно лишь в том случае, если удастся отключить или обойти FRP.

Как бороться с FRP

Блокировка FRP. Аппарат Huawei P20 Pro

Итак, телефон заблокирован. Это, кстати, может не обязательно быть следствием злого умысла – скажем, при обновлении Android 8 до Android 9 (оболочка EMUI) вас также вполне могут попросить ввести установочные данные вашего Google-аккаунта. И если вы сделаете это неверно три раза – произойдет блокировка устройства. Поэтому крайне важно точно помнить данные своего аккаунта – при корректном их вводе проблем не возникнет.

Однако если все-таки вы стали «жертвой» FRP (повторюсь – это возможно даже по невнимательности), то методы обхода блокировки существуют, хотя почти все они связаны с новым (последующим) сбросом устройства. Ну а после сброса вам предстоит все-таки ввести корректные данные привязанного аккаунта, иначе все это зря. Либо сброс происходит с предварительной подготовкой – в систему добавляется новый пользователь, установочные данные которого известны, а права достаточны для того, чтобы устройство использовать.

Наиболее распространенный метод обхода блокировки FRP — переход в настройки устройства через Google Maps. Суть методики заключается в том, чтобы методами разрешенных переходов (ведь блокируется не весь телефон, а приложения) попасть в меню настроек аппарата, где либо попытаться ввести установочные данные связанного аккаунта, либо создать новый и привязать устройство к нему. Вариант с новым сбросом устройства в надежде на то, что после него он не попросит ввести данные аккаунта, можете даже не рассматривать: попросит. Часто пользователь просто создает гостевой аккаунт и пользуется устройством с него: мастер-аккаунт при этом остается замороженным, но если пользователю повезло и он смог создать «гостя» с высоким уровнем привилегий, он сможет устанавливать и удалять приложения, совершать звонки, фотографировать и т.п. – то есть делать все то, что может делать и «хозяин». Однако данные хозяина будут недоступны.

Еще один обход блокировки – зайти с компьютера в связанный аккаунт и стереть устройство с отвязкой аккаунта. После этого устройство можно будет сбросить без проблем и привязать на новый аккаунт.

Как видите, в любом случае – потеря данных. И это крайне неприятно.

Восстановление данных с устройств, заблокированных FRP

Даже с заблокированного FRP устройства восстановление данных возможно. Однако не следует путать восстановление данных и возвращение аппарата к жизни: специалист по восстановлению информации не преследует цели отремонтировать или разблокировать ваш телефон, его задача – извлечь с него данные.

Начнем с главного. Восстановить данные с FRP-блокированного телефона можно не со всех моделей. Важным критерием оценки восстановления информации с такого аппарата является наличие root-прошивки: если она есть, то восстановление возможно. Если же нет – то нужно ждать лучших времен, когда она появится. Выше я говорил, что аппарат не даст возможности совершить повторный сброс до заводских настроек, либо (если даст), то при запуске все равно попросит ввести установочные данные первоначального связанного аккаунта. Так как же заставить его принять root-прошивку?

Методики существуют. Самая простая – выход в настройки аппарата и создание нового пользователя, из под которого уже и рутится телефон. Сразу скажу: срабатывает не со всеми аппаратами, однако примерно половину заблокированных FRP устройств можно таким образом разблокировать. Другая половина разблокируется через «жесткий» root – то есть прошивка льется в плату телефона через JTAG или другие (предусмотренные производителем) протокола обмена данными. При этом крайне важно понимать, что как таковой разблокировки устройства не происходит – фактически мы всего лишь получаем доступ к внутренним накопителям телефона, которые можем скопировать к себе на жесткий диск, проанализировать и попытаться вытащить из них данные.

Почему попытаться? Довольно много моделей телефонов, которые продаются в настоящее время, зашифрованы. Это вовсе не обязательно, но встречается часто. Таким образом, даже получив образ аппарата, можно ничего не восстановить, так как данные зашифрованы. Однако и шифрование – еще не приговор. Для некоторых типов шифрования Android уже давно существуют программы – генераторы ключа, если известен пароль (пин-код).

По моему опыту можно сказать, что в случае блокировки FRP успешно восстанавливаются данные примерно с 75% телефонов; не поддаются восстановлению данные только с тех аппаратов, где хозяин не помнит никаких паролей, пин-кодов и прочих сведений, необходимых для расшифровки. Старайтесь не забывать пароли и установочные параметры связанных аккаунтов, и вам, скорее всего, никогда не придется восстанавливать данные с устройства, заблокированного FRP.

Станислав К. Корб ©2019

Восстановление фотографий в Бишкеке. Восстановление данных в Бишкеке

Эту статью я решил посвятить единственной проблеме: восстановлению цифровых фотографий. И причин тому три: во-первых, огромное количество людей ежедневно теряет свои бесценные снимки; во-вторых, многие потерявшие снимки, начинают восстанавливать их самостоятельно и весьма рискованными методами (часто – с плачевными последствиями); в-третьих, многих проблем с цифровыми снимками можно избежать, следуя простым рекомендациям.

Но – по порядку.

Цифровые фото – это те же файлы, что и любые другие, но их отличает одна особенность: место, откуда они берутся. Это цифровая фотокамера. Камера может быть самостоятельным устройством, а может находится в составе другого (наиболее часто это мобильный телефон, реже – GPS-навигатор или видеорегистратор). Из этого простого правила (источник цифровых снимков – цифровые камеры) следует простой вывод: цифровые фотографии генерируются в количестве, прямо пропорциональном количеству цифровых камер. Другими словами, ежедневно появляется бессчетное число новых цифровых снимков, под которые выделяется место в облачных хранилищах, на жестких дисках и других устройствах хранения информации. Количество такого контента постоянно растет.

До 90% всех фотографий в мире снимается в формате JPEG – весьма старом, надо сказать, существующем аж с 1991 года. Значительно меньшие объемы – в форматах RAW, то есть без сжатия. Такие фотографии (в форматах RAW) имеют более высокое качество и больше возможностей для обработки, чем обычные JPEG-снимки, но и занимают намного больше места (в среднем в 4 – 5 раз, но в зависимости от количества деталей на снимке, размер файла может быть и больше).

Проблемы, возникающие с фотографиями, можно условно разделить на проблемы профессиональных и непрофессиональных фотографов – прежде всего, по объему снимаемого материала (профессионалы снимают на порядки больше непрофессионалов) и по типам используемых камер (профессиональные фотографы используют более дорогое оборудование).

Проблемы непрофессионального фотографа

Фотограф-непрофессионал снимает для себя или для родных и знакомых и не извлекает выгоды из отснятого материала. Поэтому обычно он снимает на мобильный телефон, реже – на зеркалку начального уровня или беззеркальный цифровой фотоаппарат. Подавляющее большинство фотографов-непрофессионалов использует карты памяти стандарта SD (в основном – microSD), и в этом кроется первая проблема. Эти карты не особенно долговечны, особенно – microSD. Выход их из строя – весьма обычное явление, к нам постоянно обращаются владельцы карт microSD с одной и той же проблемой: карта перестала определяться. Восстановление данных с карт памяти этого типа имеет свои особенности, одна из которых – дороговизна. Дело в том, что эти карты памяти выполнены в монолитном исполнении, то есть все микросхемы разведены на кристалле, который залит в компаунд. Для того, чтобы выполнить чтение данных из NAND-микросхемы такой карты, требуется подключение к технологическим контактам на плате карточки, для чего с нее снимается лак; однако расположение этих контактов далеко не всегда известно, поэтому часто требует серьезных исследований (с помощью цифрового анализатора и осциллографа определяется, какие контакты за что отвечают). В общем, если у вас вышла из строя карточка microSD, и снимки с нее вам нужно вернуть – знайте, что это будет стоить недешево. Поэтому я дам простой совет, как этого избежать: раз в 1 – 1.5 года заменяйте карту памяти в своем телефоне. Стоимость карты несопоставима со стоимостью восстановления данных. И второй совет: используйте только карты памяти известных брендов, не покупайте малоизвестный китайский ширпотреб. Выгода составит не больше 2 – 3 долларов, а вот за надежность неизвестных брендов не поручится никто и никогда (кроме продавца, конечно).

Вторая проблема фотографа-непрофессионала – хранение фотографий. Как правило весь фотоархив находится в одном (и единственном) месте – на компьютере его хозяина. И любые неприятности с этим компьютером могут привести к потере фотоархива. Что бывает чаще всего? Случайное форматирование диска или удаление папки с файлами. Довольно часто – заражение вирусом-шифровальщиком и потеря всех данных (включая фотоархив). Реже – случайная переустановка системы на диске, где хранился архив. Еще реже – физические проблемы с диском (выход его из строя). Что можно посоветовать во избежание таких проблем? Самый простой и очевидный совет – резервное копирование. Необходимо приобрести внешний жесткий диск и периодически копировать на него ваши фотографии с основного устройства хранения.

Правда, при организации резервного копирования многие пользователи совершают одну и ту же ошибку: они решают, что одной копии на внешнем диске вполне достаточно, и не оставляют файлов на диске компьютера / ноутбука. То есть переносят весь архив на внешний диск, а место на компьютере используется под фильмы, музыку, игры и другие, в общем-то, не имеющие критической важности, файлы. При этом внешний жесткий диск – это ведь тоже не место абсолютной надежности хранения данных, он также может выйти из строя. В целом, хочется сказать, что резервное копирование – это именно резервное, а не просто копирование, и подразумевает, что где-то есть основная (мастер) копия данных.

Таким образом, главные угрозы для фотографий фотографа-непрофессионала – выход из строя карты памяти и случайная потеря фотоархива (включая вирусное заражение).

Проблемы профессионального фотографа

Профессионального фотографа от непрофессионала отличают прежде всего используемое оборудование, объемы снимаемого материала и то, что из этого занятия фотограф извлекает прибыль. Именно поэтому он обычно использует достаточно дорогие фотокамеры профессионального и полупрофессионального уровня, дорогую оптику (объективы) и массу различных приспособлений (штативы, осветители, фотоэкспоноиетры и т.п.). Карты памяти профессионального фотографа также обычно относятся к верхнему или среднему ценовому сегменту (высокая производительность). Однако проблемы фотографа-профессионала во многом схожи с проблемами непрофессионального фотографа.

Первая проблема – внезапный выход из строя карты памяти. Это случается обычно либо во время съемок, либо во время копирования содержимого карты на компьютер. В первом случае основная причина выхода карты из строя – удаление данных с карты средствами фотоаппарата (как правило, удаляются не понравившиеся или не получившиеся снимки) и последующая съемка. Фотоаппарат – не компьютер, и не может рационально использовать образовавшиеся «дырки» в файловом поле после удаления фотографий. Рано или поздно происходит съемка слишком большого файла, который не влезает в такую «дырку», и система трансляции карты «сходит с ума». После этого карта либо просит отформатироваться (это, надо отметить, легкий случай), либо полностью перестает работать (определяется в системе с объемом 0 байт). Во втором случае (при копировании данных) карты выходят из строя при неправильном извлечении из компьютера или при спешке при их установке в кард-ридер. Карта памяти при этом испытывает небольшой электрический шок; после такого выхода из строя восстановление данных возможно в основном только выпаиванием NAND-микросхем и их прямым чтением. Тут всего один совет: при работе с картами памяти будьте предельно внимательны, не торопитесь. И время от времени заменяйте карты памяти на новые, ведь при интенсивном использовании они интенсивно изнашиваются.

Вторая проблема – потеря данных с носителей (форматирование, удаление). Как правило, происходит случайно – время от времени фотограф-профессионал удаляет уже отработанный материал (который был передан клиенту), ну а вместе с ним случайно удаляются и нужные на текущий момент данные. Точно также происходит потеря данных во время съемки: случайное форматирование карты памяти в фотоаппарате при путанице с картами (карту с только что отснятым материалом устанавливают в камеру, видят, что она полная, и не задумываясь, форматируют, после чего либо сразу же замечают это, либо продолжают снимать на ту же карту, затирая уже отснятый ранее материал). Совет в данной ситуации такой же, как в первом случае: внимательно следите за тем, что вы делаете. Старайтесь не допускать роковых ошибок. Если же заметили, что снимаете на ту же карту, что и раньше – извлекайте ее из устройства, ставьте новую (чистую) карту, и продолжайте снимать; с карты, которая не была полностью заполнена, еще можно восстановить как минимум часть фотографий, а если вы ее отснимете полностью, то и восстановить будет ничего нельзя.

Третья проблема сродни второй: потеря всего фотоархива или его части по причине выхода из строя устройств хранения или атаки вируса-шифровальщика. Не секрет, что профессиональные фотографы хранят свои наиболее удачные работы, со временем их накапливается немало. Для их хранения используются большие жесткие диски или сетевые хранилища; пользователи Apple-устройств часто работают с Thunderbolt—RAID-массивами производства LaCie. Выход из строя такого устройства приводит к потере огромного массива фотографий. В нашей практике были восстановления фотоархивов объемом 20, 36, 48 Тбайт. Заражения этих массивов, если они находятся в одной сети с главным компьютером, также довольно часты. Избежать потерь такого рода можно, только настроив резервное копирование фотоархива на устройствах, не имеющих постоянного контакта с мастер-копией и мастер-компьютером.

Итак, какие проблемы преследуют профессионального фотографа? Неприятности с картами памяти, потеря данных с отдельных (как правило, свежих) съемок по неосторожности и потеря всего фотоархива.

Резервное копирование – ключ к безопасности

Как я писал выше, только резервное копирование данных дает 100-процентную гарантию сохранности данных. Многие, правда, под резервным копированием понимают не совсем то, что вкладывается в этот термин: делается копия данных на внешний диск, а основная (мастер) копия данных удалятся. Это не резервное копирование, это просто перемещение данных для хранения на другой носитель! Резервное копирование подразумевает наличие основной (мастер) и резервной копии данных. При потере любой из них вторая копия остается и может быть использована.

Восстановление фотографий

Конечно, даже при организации резервного копирования, потери данных все еще остаются возможными, особенно это касается профессиональных фотографов, которые ежедневно снимают много материала. Поэтому время от времени как перед профессионалами, так и перед непрофессионалами от фотографии возникает задача восстановить утерянные снимки.

Делать это самостоятельно возможно, но при соблюдении двух условий. Вот они:

1) Устройство, на котором утеряны фотографии, должно быть абсолютно исправно. Если есть сомнения в его исправности, то лучше обратиться к профессионалам, так как, «добив» устройство попытками восстановления фото, вы не только уменьшаете шансы на успешный исход, но и увеличиваете стоимость восстановления.

2) Любое восстановление данных должно производиться на физически другой носитель. Это очень важно! Если вы будете восстанавливать файлы на тот же носитель, вы перепишете большую их часть; после этого восстановление данных будет уже невозможно даже для профессионала.

Если же устройство не является исправным, или вы не уверены в том, что можете самостоятельно сделать восстановление данных безопасно, лучше обратиться к профессионалам. Наш опыт, который составляет на текущий момент более 25 лет, а также наше техническое оснащение позволяет нам решать любые задачи восстановления данных.

Станислав К. Корб ©2019

SSD LENOVO, NVME, 256GB: ВОССТАНОВИТЬ ДАННЫЕ С ТВЕРДОТЕЛЬНОГО ДИСКА

Задача. Восстановить данные с SSD Lenovo 256GB, интерфейс NVMe

Описание проблемы. Накопитель поступил с жалобой на то, что он не определяется компьютером.

Результаты диагностики. Для диагностики накопителя использованы ПАК РС-3000 и переходник NMVe — SATA. Обнаружено, что диск имеет дефектные сектора.

Необходимые для восстановления информации процедуры.

1) Подключение интерфейса на интерфейс SATA.

2) Подготовка к созданию посекторной копии накопителя (настройка накопителя и интерфейса).

3) Посекторное клонирование накопителя с интеллектуальной обработкой дефектных секторов.

4) Анализ полученного образа, построение виртуальной файловой системы.

5) Извлечение данных из полученного образа.

Результат.

Данные восстановлены с минимальными (менее 0.1%) потерями.

Особенности накопителя.

Интерфейс NVMe начал внедряться в 2012 г., однако только с 2015 г. он получил более-менее широкое распространение. На текущий момент NVMe-накопители не являются широко распространенными устройствами в пользовательском сегменте, однако они активно используются в серверном и enterprise-сегментах благодаря высокой производительности устройтсв (фактически подключение идет по высокоскоростной шине PCIe). В нашем опыте этот диск — первый накопитель с интерфейсом NVMe. Очевидно, его проблемы возникли в результате перегрева компьютера, в котором он был установлен (один из относительно новых ноутбуков Lenovo).

WESTERN DIGITAL: ВОССТАНОВИТЬ ДАННЫЕ С ЖЕСТКОГО ДИСКА

Задача. Восстановить данные с жесткого диска Western Digital, побывавшего до нас в нескольких других сервисах

Описание проблемы. Накопитель поступил в очень плохом состоянии: этикетка отсутствует, плата электроники активно паяная, внутри гермоблока нет верхнего магнита и блока магнитных головок, мусор и пыль.

Результаты диагностики. В результате визуальной диагностики выяснено, что отсутствует часть узлов и агрегатов жесткого диска; для точной диагностики требуется их подбор и установка в носитель с последующим анализом.

Необходимые для восстановления информации процедуры.

1) Определение семейства и модели жесткого диска.

2) Подбор и адаптация платы электроники, анализ содержимого прошивки платы.

3) Подбор и установка блока магнитных головок.

4) Запуск накопителя в безопасном режиме, определение потенциальных рисков.

5) Устранение рисков, подготовка накопителя к копированию данных.

6) Копирование накопителя (посекторный клон), извлечение данных пользователя из полученной копии.

Результат.

Данные восстановлены c потерями около 15%.

Особенности заказа.

Сложность восстановлений данных, приходящих с дисками, которые пробовали восстанавливать в других сервисах, зависит от уровня их повреждений. В нашем случае повреждены оказались все важные элементы жесткого диска (пластины, плата электроники), а часть узлов просто отсутствовала (верхний магнит актуатора, блок магнитных головок). В таких условиях работы всегда начинаются с определения семейства и модели жесткого диска.

В нашем случае это не составило особого труда: не смотря на то, что плата электроники была неисправна и на ней имелись следы активных попыток ремонта в виде пайки и остатков флюса, содержимое микросхемы ПЗУ не пострадало. Считав его, мы узнали семейство жесткого диска, после чего из базы донорских устройств были подобраны подходящие запчасти. После установки на накопитель исправной ПЗУ и исправного блока магнитных головок с магнитом, нам удалось добраться до служебной зоны по одной из системных головок и считать ее. Дальнейшая инициализация диска производилась посредством процедуры hot swap для того, чтобы не подвергать стрессу жесткий диск при запуске.

Дело в том, что при запуске жесткий диск не только производит чтение модулей системной области, но также и записывает или даже перезаписывает часть из них. Естественно, что не оригинальные головки могут делать это хуже, медленнее, или даже просто неправильно, что приводит к дополнительным разрушениям системной области — которых, конечно же, мы должны избежать. Поэтому из диска вычитываются только те модули служебной зоны, которые непосредственно необходимы для вычитывания с него данных; остальные модули берутся с исправного диска. После подготовки служебной зоны исправного накопителя он превращается по служебной зоне, транслятору и паспорту в полный клон нашего больного; этот клон запускается в штатном режиме, помещается в состояние sleep, после чего его плата электроники монтируется на неисправный диск, производится его безопасная инициализация, и мы приступаем к вычитыванию информации. Это и есть hot swap.

Логично предположить, что после многочисленных вмешательств поверхность нашего пациента не может быть идеальной. Так это и оказалось. На верхней поврхности диска оказалось много мусора и пыли, следы стертых отпечатков пальцев и прочее. Пластину пришлось отмывать специальными химикатами. После мытья поверхность хотя и стала чистой, но микроповреждения поверхности никуда не делись. Вычитать данные из этих областей с микроповреждениями, увы, не удалось. Общий процент файлов, которые не удалось восстановить благодаря вмешательству до нас, составил 15%.

HGST HTS5411612J9SA00: ВОССТАНОВИТЬ ДАННЫЕ С ЖЕСТКОГО ДИСКА

Задача. Восстановить данные с жесткого диска HGST HTS5411612J9SA00

Описание проблемы. Накопитель поступил в составе не работающего ноутбука.

Результаты диагностики. Для диагностики накопитель был исследован с помощью ПАК РС-3000. Выяснено, что накопитель не имеет проблем, вышел из строя ноутбук.

Необходимые для восстановления информации процедуры.

1) Копирование данных на накопитель заказчика.

Результат.

Данные восстановлены полностью.

Особенности заказа.

В данном случае нам не пришлось прибегать к технологиям восстановления данных. Информация заказчика была скопирована на его внешний носитель.

TOSHIBA MK3265GSXN: ВОССТАНОВИТЬ ДАННЫЕ С ЖЕСТКОГО ДИСКА

Задача. Восстановить данные с жесткого диска Toshiba MK3265GSXN

Описание проблемы. Накопитель не определяется в системе.

Результаты диагностики Для диагностики использован ПАК РС-3000. Выяснено, что после подачи питания накопитель выходит в готовность, но после попытки обращения к нему зависает. Это является результатом проблем в служебной области диска.

Необходимые для восстановления информации процедуры.

1) Запуск накопителя в технологическом режиме.

2) Анализ служебной области, исправление проблем.

3) Запуск накопителя в нормальном режиме.

4) Извлечение пользовательских данных.

Результат.

Данные восстановлены полностью.

Особенности накопителя.

Для накопителей Toshiba в полной мере справедливо то, что было сказано ранее для накопителей Western Digital: эти диски довольно часто имеют проблемы с фоновой активностью. Однако природа этих проблем несколько иная, чем у Western Digital.

Дело в том, что у накопителей Toshiba указанной модели дефект-листы находятся в ПЗУ и имеют ограниченный размер. Поэтому при переполнении одного или нескольких дефект-листов (обычно это растущий список дефектов, G-List) накопитель переходит в замороженное состояние, так как не может поместить в дефект-лист новый дефект. Это замороженное состояние (правильнее его назвать «состояние ожидания») требуется прервать и впоследующем запретить добавление новых дефектов в дефект-листы во время работы накопителя — только так можно вычитать данные.

Western Digital разрабатывает жесткие диски с двойным актуатором

В прошлом году корпорация Seagate анонсировала революционную технологию: внутри одного гермоблока предлагается независимо работать двум разным комплектам головок (двухактуаторный БМГ) (мы писали об этом). Теоретически это должно снизить энергопотребление при сравнении с одноактуаторными моделями такого же объема, но основная причина разработки таких моделей не в энергоэффективности, а в производительности. Жесткие диски уже давно сильно уступают твердотельным по этому параметру, и массовое распространение SSD до настоящего времени сдерживала только их относительно высокая стоимость. Однако ценовой барьер постепенно тает, и в скором времени может оказаться так, что жесткие диски при сравнении с твердотельными будут как черепаха и ахал-текинский скакун.

Использование двойного актуатора теоретически дает двойной прирост производительности, так как внутри одного и того же гермоблока начинают работать два физически разных комплекта головок. Разработчики обещают увеличить производительность дисковой подсистемы, кроме теоретических 100%, еще как минимум на 50% за счет организации внутри такого гермоблока (по сути, это два разных жестких диска в одной банке) RAID-массива уровня 0 (страйп). Логично заключить, что такой сумасшедший прирост производительности моментально делает жесткие диски нового поколения весьма конкурентоспособными при сравнении с твердотельными дисками даже среднего сегмента, ведь сейчас производительность дисковой подсистемы упирается не в производительность самого устройства, а в производительность интерфейса. Именно поэтому разрабатываются и внедряются новые скоростные интерфейсы, такие как SD Express, USB 3.2, NMVe и т.п. Но вдохнуть «новую жизнь» в старый добрый SATA без радикального увеличения производительности SATA-устройств невозможно.

Именно эту задачу и решает двойной актуатор.

Естественно, основной конкурент корпорации Seagate – Western Digital – никак не мог оставаться в стороне и смотреть, как Seagate отъедает солидную часть рынка жестких дисков. Вообще, эти два гиганта цифровых устройств хранения информации идут в ногу достаточно синхронно и делят рынок почти пополам. Оба почти одновременно начали делать жесткие диски форм-фактора 2,5 дюйма толщиной 5 и 7 мм; оба почти одновременно начали выпускать гибридные накопители SSHD и вести разработки (а затем и выпускать) твердотельные диски; с завидным постоянством оба производителя анонсируют и выпускают рекордсменов емкости (сначала 8 Тб, потом 12, теперь 16 и идет разговор о 20); и так далее.

И вот Western Digital анонсирует, что разработки дисков с двойным набором головок идут полным ходом. Эта информация появилась недавно на сайте ANANDTECH. Не буду утомлять вас описанием самой технологии – она ничем не отличается от уже анонсированной корпорацией Seagate технологии Mach2. Остановлюсь лишь коротко на том, чем нам эта технология «грозит».

Итак, первый плюс от ее внедрения – это заметный прирост производительности дисковой подсистемы, которая, теоретически, должна заработать с такой же скоростью, как SSD среднего уровня. Это раскрывает новые горизонты для геймеров, видеоредакторов и других пользователей ПК, работающих с большими объемами информации. Второй плюс также очевиден – намного большая емкость устройства при относительно невысокой (относительно твердотельного диска) цене. Ну и третий плюс – это несколько более низкое энергопотребление. Разработчики что Seagate, что WD обещают снизить энергопотребление двухактуаторных дисков примерно на 25 – 30 %. В пределах одного компьютера это немного, но в пределах глобального энергопотребления – немало.

Собственно, плюсы на этом заканчиваются, и начинаются минусы.

Первый и самый главный минус – эти устройства будут статистически менее надежны, чем одноактуаторные диски, а с реализацией страйп-архитектуры надежность уменьшается еще больше. Уменьшение надежности объясняется простой механикой и элементарной логикой: чем больше в устройстве движущихся частей, тем больше вероятность выхода из строя любой из них.

Из первого минуса вытекает второй: в случае выхода из строя такого диска восстановить с него данные будет намного сложнее, особенно – при использовании технологии страйпирования. Почему? Причины просты. Во-первых, работа двойного актуатора означает совершенно иную физику (и прежде всего – аэродинамику) внутри гермозоны, а значит, более тонкую работу микропрограммы и более тонкие настройки головок. Во-вторых, если используется страйпирование, для восстановления данных будет необходимо получить содержимое каждой пластины; пропуск одной будет означать невосполнимые для большинства файлов потери, а значит – невозможность восстановления данных. Таким образом, диски с физически поврежденными поверхностями (запилы, царапины) автоматически попадают в категорию «восстановление данных невозможно или возможно с очень небольшим процентом выхода годного» даже если повреждена только одна поверхность из всех. Такое невозможно для подавляющего большинства одноактуаторных дисков: даже при повреждении одной (или в некоторых случаях больше) поверхностей восстановление значительной части данных все еще остается возможным.

Третий минус также очевиден, как первые два: для обеспечения надежности хранения информации ее дублирование (не резервное копирование, а именно дублирование) становится одной из первостепенных задач построения систем, в которых будут работать двухактуторные диски. А это, как ни печально, убьет одно из перечисленных выше преимуществ, а именно – относительно низкую стоимость и относительно высокую энергоэффективность.

Таким образом, пока что, в чистой теории, я могу характеризовать двухактуаторные диски как кота в мешке: при очевидных плюсах имеются весьма существенные минусы, которые лично меня отвратят от покупки такого устройства как минимум в первые годы его промышленной реализации. Однако если производители реализуют двухактуаторные модели с единственной головкой на кронштейне (то есть одна пластина, две покерхности, с каждой из которых работает независимая головка) – такой диск я бы купил не задумываясь, так как использование его в качестве системного заметно ускорит работу дисковой подсистемы компьютера.

Станислав К. Корб ©2019

WESTERN DIGITAL WD500BEVT: ВОССТАНОВИТЬ ДАННЫЕ С ЖЕСТКОГО ДИСКА

Задача. Восстановить данные с жесткого диска Western Digital WD500BEVT

Описание проблемы. Накопитель не определяется в системе.

Результаты диагностики Для диагностики использован ПАК РС-3000. Выяснено, что после подачи питания накопитель выходит в готовность, но после попытки обращения к нему зависает. Это является результатом проблем в служебной области диска.

Необходимые для восстановления информации процедуры.

1) Запуск накопителя в технологическом режиме.

2) Анализ служебной области, исправление проблем.

3) Запуск накопителя в нормальном режиме.

4) Извлечение пользовательских данных.

Результат.

Данные восстановлены полностью.

Особенности накопителя.

Диски Western Digital последних архитектур имеют довольно серьезные проблемы с фоновой активностью микропрограммы, когда головки диска уже сильно изношены. Для того, чтобы восстановить данные с такого диска, требуется прервать фоновую активность микропрограммы и запретить ее обработку в дальнейшем.

Поскольку в этих дисках фоновая активность в основном связана с подсистемой SMART (а также, но в значительно меньшем объеме, с дефект-менеджментом), для доступа к данным обычно достаточно запретить активность микропрограммы, отвечающей за SMART. Иногда встречаются более тяжелые случаи, когда фоновая активность имеет другую природу (например, подстройка параметров головок чтения-записи), но и эти проблемы вполне решаемы.



Мы принимаем к оплате | We accept payments


Мы стажировались и работали в странах | We worked or practiced in following countries