Большой жесткий диск как большая могила для данных

Жесткие диски большой емкости (больше 8 Тб) все чаще покупают пользователи для хранения на них растущих файловых архивов. Туда уходят как коллекции мультимедия (музыка, фильмы и прочее), так и уникальные пользовательские данные: фотоархивы, видеоархивы, документы и так далее. Большой жесткий диск очень удобен в этом плане: имеет огромный объем при относительно скромных размерах и приемлемой цене, позволяет хранить всю семейную информацию на одном устройстве.

Однако это неоспоримое преимущество является также и ахиллесовой пятой устройства. Хранение всех яиц в одной корзине чревато потерей корзины вместе с яйцами. Если не организован грамотный бэкап, то в случае непредвиденных ситуаций данные могут быть безвозвратно утеряны.

Ниже — пример такой утери.

Залом helioshield накопителя Seagate Exos 20 TB после падения

Жесткий диск Seagate Exos 20 TB упал со стола на пол. Повреждения коснулись не только внутренних узлов устройства — они были настолько сильные, что их видно даже на корпусе диска: вмятины и заломы helioshield, внешней крышки, защищающей диск от утечки гелия. Естественно, диск отказался работать, и огромный массив данных оказался заперт внутри.

Вмятина на helioshield накопителя Seagate Exos 20 TB после падения

Восстановление данных с такого накопителя представляет ряд трудностей. Прежде всего, диск наполнен гелием — соответственно, работать приходится в гелиевой атмосфере. Гелий должен быть чистым, стоимость очищенного газа намного выше, чем стоимость того, которым наполняют воздушные шары на ярмарках и увеселительных мероприятиях.

Следующая проблема — особенности работы микропрограммы, которые должны быть отключены прежде, чем начинать копировать данные с такого диска. Это фоновые процессы, которые диск включает для того, чтобы максимально эффективно использовать свободное место и «лечить» поверхность; естественно, в случае повреждений поверхности и использования донорских запчастей эти процессы не приводят ни к чему хорошему, как минимум сильно замедляя работу диска, а как максимум — выводя его из строя.

Наконец, последняя проблема — это запчасти. Для таких дисков они стоят крайне высоко, и в процессе работы приходят в негодность — поэтому, по сути, являются выброшенными на ветер большими деньгами. Конечно, как результат клиент получает данные, однако стоимость восстановления складывается не только из стоимости работ и расходных материалов, но также и из стоимости запчастей.

Часто стоимость восстановления информации является единственной причиной отказа от работ. Казалось бы, и данные нужны, но денег на их извлечение из неисправного устройства нет.

Часто бывает так, что заказчик обращается в другое место, где ему предлагают более низкую цену. После этого он может снова вернуться к нам — но диск оказывается уже безвозвратно испорчен и восстановление данных с него невозможно. Стоимость, конечно, важный параметр, но в случае с восстановлением информации — все же не решающий. Опыт и чистоплотность специалиста имеют гораздо большее значение.

Если говорить про конкретно этот диск, то заказчик отказался от работ, так как общая стоимость восстановления, включая использование химически чистого гелия и необходимость покупки запчастей, значительно превысила его бюджет.

Будьте предельно аккуратны, используя жесткие диски большой емкости, и делайте резервные копии данных.

Пара других больших дисков: левый уронен, правый — донор запчастей.

Восстановление информации с твердотельного диска SSD INTEL 545S SERIES

На днях нам в работу попал накопитель Intel 545S Series — довольно редкий гость в наших лабораториях как в Финляндии, так и в Кыргызстане. Выпущенный 7 лет назад (дата производства данного диска: 30 мая 2018 г.), он верой и правдой отработал почти весь этот срок, и вышел из строя не из-за старения, а по причине неправильного использования.

Восстановление данных с таких дисков — всегда испытание. Дело в том, что SSD Intel по праву считаются одними из самых надежных твердотельных накопителей на рынке. Выход из строя такого диска практически всегда сопряжен с серьезными проблемами: либо критический износ NAND-микросхем, либо проблемы с электропитанием, либо воздействие форс-мажорных обстоятельств (затопление, пожар и т.п.).

В случае с этим диском — восстановление данных прошло успешно, так как износ микросхем памяти позволял вычитывание данных в приемлемом для заказчика качестве.

Запчасти и доноры в восстановлении данных

Для процедур восстановления данных довольно часто требуются запасные части. К сожалению, купить их отдельно, в виде заменяемых узлов, невозможно. Поэтому в качестве запчастей покупается готовый девайс. Если запчасти нужны для жесткого диска, то покупается жесткий диск, если для SSD — то твердотельный диск, и т.п.

При этом не важно, что именно нужно в качестве запчасти — плата электроники или один элемент на ней, блок магнитных головок или одна головка, крышка гермоблока или мотор — покупается устройство целиком, и обычно — исправное на 100%.

Для чего исправное? Для того, чтобы исключить (в случае неуспеха при замене запчасти) проблемы с запчастями, и искать причину неуспеха в чем-то еще.

В некоторых случаях одной запасти может оказаться мало. К примеру, при таких неисправностях, как повреждения магнитных пластин жесткого диска, может потребоваться два, три или даже больше комплектов головок для вычитывания необходимых данных или их части. С чем это связано?

Например, диск имеет концентрический запил на одной из поверхностей. Технология восстановления данных в этом случае включает три шага. Первый — вычитывание диска по тем поверхностям, где нет повреждений. Для этого донорский блок магнитных головок подвергается модификации: головка по поврежденной поверхности либо отгибается, либо (что чаще) — удаляется физически. После этого производится модификция микропрограммы накопителя (ее заставляют «забыть» об одной из головок, которую мы удалили) и накопитель вычитывается. После этого в гермоблоке производится новая модификация, предназначенная на вычитывание уже поврежденной поверхности, и производится чтение поврежденной поверхности в доступных для вычитывания неповрежденных областях.

При этом головка часто выходит из строя, попадая на невидимые глазу микроповреждения (начинающиеся запилы, сколы, коцки и т.п.), поэтому для вычитывания поврежденной поверхности обычно используется 2 — 3 новых комплекта запчастей.

Соответственно, восстанавливая данные с накопителей с физическими повреждениями (особенно это касается запиленных и зацарапанных поверхностей), стоимость восстановления формируют не только работы, но и количество необходимых запчастей. Особенно драматически сказываются на цене физические повреждения больших накопителей, цена на которые довольно высока: 6, 8, 10 и более терабайт.

Стоимость запчастей для накопителей свыше 20 терабайт может легко превышать 1000 долларов США.

Конечно, наши специалисты постараются подобрать запчасти для проведения работ максимально дешево, однако в случае с восстановлением данных решающим критерием является все же не цена, а качество запчастей. Тут нельзя делать так, как часто делают с автомобилями: установить на время деталь подешевле, чтоб машину можно было использовать. Здесь подход абсолютно другой: данные нужно вычитывать сразу и максимально полно, иначе может получиться так, что плохие запчасти еще больше усугубят положение, и чтение данных в дальнейшем окажется невозможным.

Как выбирать SSD в 2025 году: очень серьезная тема

Лет пять назад вопрос правильного выбора SSD не стоял так остро, как сейчас, по двум причинам: во-первых, не было такого их разнообразия, и во-вторых, не было такой массы их подделок или откровенно плохих устройств. Сейчас актуально и то, и другое: SSD-диски производит довольно много компаний (только в официальном списке производителей твердотельных дисков в Википедии их почти 70; на самом деле их минимум в два раза больше), а некоторые вендоры научились подделывать более дорогие SSD, причем часто — весьма убедительно.

Поэтому, для того, чтобы выбрать SSD в 2025 году, требуется ответить на три главных вопроса:

  1. Будут ли на этом диске храниться ваши данные, или диск будет использоваться только для загрузки операционной системы и программ?
  2. Важна ли вам постоянная высокая производительность, или вы можете потерпеть «провалы» производительности?
  3. Насколько интенсивно будет использоваться диск?

Будут ли храниться на диске ваши данные?

Риск потерять данные с SSD по сравнению с традиционными жесткими дисками намного выше, так как твердотельный диск обычно выходит из строя очень быстро, без периода, характерного для деградирующих жестких дисков (компьютер «тупит», появляется синий экран и т.п. — все это характерно для HDD; SSD выходит из строя внезапно и очень быстро).

Поэтому, выбирая твердотельный диск для хранения данных, следует подбирать устройство с максимальным ресурсом NAND-микросхем (циклы Program/Erase): чем больше слоев в микросхеме, тем меньше этот ресурс. Идеально использование однослойных микросхем, имеющих ресурс Р/E около 100 тысяч циклов; для сравнения, современная QLC-память, хранящая до 4 байт на ячейку, имеет этот ресурс в 100 раз меньше, всего 1000 циклов P/E, что делает такие диски очень ненадежными именно для хранения данных.

Важна ли постоянная высокая производительность?

Постоянно высокая производительность — непременное условие в системах, связанных с достаточно большими нагрузками на дисковую подсистему. Это могут быть как обычные систем видеонаблюдения, так и системы для рендеринга (создание видеофильмов), небольшие сервера и прочее. В такие системы требуется установка твердотельных дисков не только с высокой производительностью, но и с постоянной производительностью.

Что это значит?

Вы никогда не замечали, что, например, используя диск для копирования большого фильма, вначале скорость копирования высокая, а по прошествии какого-то времени она резко «проваливается» и начинает плавать в значениях раз в 5 — 10 ниже первоначального? И при этом — не поднимается.

Это связано с тем, что используемый вами SSD произведен по безбуферной технологии: для удешевления производства на диске нет микросхемы буферного ОЗУ, ее роль выполняет часть NAND-микросхем. При этом скорость работы NAND ниже, чем ОЗУ; какое-то время, пока такой буфер не переполнен, диск сохраняет высокую скорость работы. Однако как только буфер переполняется, скорость работы значительно проседает, ведь диск не может больше принимать данные в тех объемах, в которых он это делал до этого.

Соответственно, для исключения подобных проблем необходимо выбирать диски, оборудованные буферным ОЗУ.

Насколько интенсивно будет использоваться диск?

Интенсивность использования — это параметр, отражающий общее время активного использования накопителя. К примеру, компьютер может быть включен 24/7, но при этом использоваться только в рабочие часы. А может использоваться все это время — например, будучи удаленной рабочей станцией, на которую заходят пользователи и производят какие-то операции практически круглосуточно.

При таком использовании крайне важно, чтобы диск не включал режим энергосбережения, который может серьезно тормозить работу накопителя и приводить к увеличенной скорости износа микросхем памяти. Кроме того, важно, чтоб микропрограмма накопителя была оптимизирована под постоянное использование: дефект-менеджмент, операции с журналами SMART и прочие фоновые процессы не должны тормозить работу диска. Все это возможно только для накопителей с хорошо продуманной архитектурой, имеющих постоянную поддержку производителя и высокую скорость отклика на его форумах.

Логично, что от малоизвестных китайских производителей ожидать такого уровня сервиса весьма наивно.

Резюме

В 2025 году, выбирая твердотельный диск, следует обращать внимание на ресурс микросхем памяти, качество и продуманность микропрограммы, наличие буферной памяти (ОЗУ) и построение SSD на базе хорошо известных, зарекомендовавших себя надежными, микроконтроллеров. Все это можно найти как у начинающих китайских производителей (но при этом они не могут похвастаться многолетней репутацией), так и у известных брэндов (Samsung, ADATA, Intel, Micron, Crucial и т.д.). Мы не можем императивно рекомендовать тот или иной накопитель — это как минимум некрасиво — однако мы должны подсказать (и делаем это в данной статье), по каким критериям вам следует выбирать устройство.

Удачных вам покупок!

И снова о том, что нельзя разбирать жесткий диск, если с него нужны данные

Иногда — не слишком часто, и слава Богу — нам приносят разобранные жесткие диски. Степень разобранности бывает разная: от просто вскрытых дисков (таких большинство) до дисков с переставленными внутренними узлами. Самый экзотический случай — это когда диск приносят по частям. В одном пакетике — блок магнитных головок. В другом — магнитные пластины — «блины». В третьем — сама банка, болты и прочее.

И приходится из этого конструктора заново воссоздавать жесткий диск. Когда «блин» один — это проще. У него всего два варианта установки. А когда «блинов» больше, то там и с вариантами установки побогаче, приходится искать правильные положения. А это, согласитесь, не просто — на сами-то «блинах» не написано ничего, методика всего одна: научным тыком. То есть ставим в банку блин, запускаем и сморим. Если работает осмысленно, серовразметку находит, какие-то данные кусками читает — зачит мы на правильном пути.

А если нет — то значит ткнули пальцем в небо, надо снова тыкать =).

Еще одна проблема — отмывать «блины» от грязи. Когда диск разбирают, то, естественно, делают это в условиях, далеких от заводской чистоты. Соответственно, на магнитные поверхности, покрытые лубрикантом, налипаем огромное количество грязи, которую необходимо убрать, прежде чем пытаться что-то вычитывать из жесткого диска. Если читать грязные «блины», то в результате головки чтения практически моментально выйдут из строя, а поверхности могут сильно повредиться.

И последнее. Далеко не всегда с разобранных дисков получается вытащить данные — в силу трех факторов. Первый, естественно — повреждения, которые принес в диск тот, кто его разбирал. Второй — невозможность сборки диска с той же точностью, как это делают на заводе — страдают как центровка дисков, так и их взаимное расположение. И третий — неизбежность потерь при вычитывании данных с такого диска после химической отмывки «блинов».

Поэтому разбирать жесткий диск я рекомендую только в том случае, когда вам не данные с него нужны, а магнитик =).

Вынужденное предупреждение: что делать, если жесткий диск издает звуки

В последние месяцы участились случаи обращения с дисками, находящимися в плачевном состоянии. Прежде всего, это диски, вскрытые в неподобающих условиях. Но кроме таких дисков, довольно большой процент обращений с устройствами, доведенными буквально до отвратительного состояния банальным бездействием пользователей.

Что делает пользователь, если роняет свой диск, или диск начинает как-то странно работать? Правильно, включает его, и старается себя убедить (если диск заработал и данные открылись), что все нормально. Реже диск перестает работать сразу, и пользователь упорно ждет, что устройство заработает.

Ни та, ни другая модель поведения не являются верными. Даже если диск после падения заработал — это не повод ему доверять. Минимально, если диск стал работать после падения, нужно немедленно копировать данные на другой носитель. Кстати, при таком копировании обычно сразу становится видно, насколько поврежден накопитель, так как копирование может затормозиться или вовсе заморозиться.

Если диск не работает сразу после включения — ждать, что он внезапно излечится, также нет никакого смысла. Напротив, вы рискуете повредить накопитель еще больше.

Правильный алгоритм действий — если вы услышали странные звуки из вашего диска, уронили или ударили его — несите его специалисту, который определит, можно ли использовать диск дальше. А если нельзя — то предложит действия по спасению информации.

В противном случае может оказаться, что диск внутри будет выглядеть примерно так, полностью исключая возможность восстановления данных:

Запиленный накопитель.

Восстановление данных с запиленного HDD из США

Третьего дня наша доблестная почта принесла мне в офис пакет, в котором для восстановления данных приехал сильно пострадавший жесткий диск. Характер повреждений был мне известен заранее — клиент предварительно списался со мной и отправил фотографии диска. Если кратко, то диск хорошо попилился.

В таких случаях гарантий успеха дать нельзя — многое зависит от нюансов, которые по фотографиям выяснить нельзя. Поэтому незамедлительно была проведена подробная диагностика. HDD был разобран в ламинарном шкафу, характер повреждений был оценен.

Три из четырех поверхностей диска оказались пропилены до стеклянной основы. Одна поверхность — самая нижняя — не была затронута разрушениями.

План работ был составлен исходя из характера повреждений. Заказчик оплатил три донорских устройства — именно столько требовалось для того, чтобы достать из диска хотя бы часть данных.

Тут важно оговориться — когда речь идет о восстановлении данных из дисков с запилами, восстановить 100% информации, естественно, нельзя. Речь идет о восстановлении меньшего количества данных. Запиленные области уже не содержат информации — кусочки магнитной поверхности, превратившиеся в пыль, нереально собрать на поверхности в том же порядке, в каком они находились там до момента разрушения. Сколько можно сохранить данных? Никогда нельзя сказать точно. Все оценки до начала работ — исключительно умозрительные. Я предположил, что в этом случае, если мне удастся «завести» диск — то есть проинициализировать его систему трансляции — я смогу восстановить не менее 50% данных.

После оплаты запчастей, приступили к работам. Первое, и самое главное — это достать из диска модули трансляции. Без них, конечно, данные также можно достать, но это будет сильно перемешанный и малопригодный для анализа цифровой мусор. Крайне малое число жестких дисков позволяют читать осмысленные данные с «чистым» транслятором, и наш подопечный в их число не входит.

Надежда на то, что самая нижняя, неповрежденная, поверхность подарит нам вожделенные модули трансляции, оправдалась: нам удалось не только извлечь эти модули, но также создать лоадер (специальную микропрограмму для запуска диска «извне»). После этого, не теряя времени, и использовав те же запчасти, мы сделали посекторный клон незапиленной поверхности. 25% информации в секторном выражении уже восстановлено, неплохо!

Дальше мы приступили к модификации донорских головок для чтения данных из запиленных областей диска. Тут существует три подхода. Первый — покрытие запиленной области специальным составом (его называют нанополимером — видимо, магическая приставка «нано» делает процесс более рекламно привлекательным; на самом деле это обычный полимер на базе соедиений углерода). Второй — полировка области запила до состояния зеркала. И третий — обход запиленной области.

Первые два способа значительно удорожают работы, так как требуют дорогостоящих химических реактивов (полимер в первом случае и полировальные пасты с очень мелким абразивом во втором), очень точных инструментов (нанесение полимера или полировка должны касаться только запиленной области, не должны распространяться на неповрежденную поверхность) и массу времени. Третий способ не такой дорогой, при этом дает абсолютно тот же результат — количество восстанавливаемых данных. Ведь мы помним, что из области запила данные восстановить нельзя, так как их там просто нет.

Единственное, что требуется для третьего способа восстановления данных — это кратное увеличение числа доноров запчастей. То есть, если в случае с покрытием полимером обычно требуется один донор, то в случае с обходом запила — два.

Первый донор имеет ограничитель хода головок изнутри, и данные копируются до начала запила изнутри. Затем донор меняется и устанавливается блок магнитных головок с ограничением хода головки снаружи запила, и также копируется до начала запила снаружи. Как правило, больше двух доноров в этом случае не нужно. Основная проблема в этом случае заключается не в подборе запчастей, а в том, как заставить диск читать данные из определенного участка поверхности, как подавить рекалибровку (чтобы головки не пытались попасть в область парковки, пересекая запил) и т.п. Все эти моменты мы успешно решаем и, как правило, вычитываем из диска довольно большой объем информации.

В случае с этим конкретным диском, нам удалось восстановить почти 90% данных — в основном это были, конечно же, фотографии детей, которые заказчик потерять никак не мог. Такой хороший результат оказался возможным по двум причинам:

Первая — диск был не полный. Точнее, он был заполнен примерно на треть, и большая часть данных оказалась в неповрежденной области диска.

Вторая — заказчик не пожалел денег на запчасти, что дало нам возможность определенного маневра по используемым методикам и в итоге привело к максимально качественному результату.

Восстановление данных с жесткого диска с искривленными головками

В работу довольно часто поступают жесткие диски со следами постороннего вмешательства, обычно это просто вскрытые диски, но бывают и довольно неприятные исключения из этого правила. Таким оказался и этот заказ.

Диск 2 терабайта, старый Seagate. Открыт, на поверхности немного пыли — но в целом терпимо. Почти уже вздохнул спокойно, но не тут-то было. Пригляделся — а на поверхности едва заметные концентрические царапины. Такие обычно бывают, если диск довольно долго «трется» каким-то инородным телом, но не керамической подложкой головки — на ней всегда остаются опилки, по которым сразу становится видно, что именно задевало поверхности.

В нашем случае таких характерных следов не было.

HDD Seagate 2 TB, пациент, после извлечения из него блока магнитных головок

Найти причину столь неприятных неисправностей оказалось довольно легко, хотя на первый взгляд все выглядело более-менее хорошо.

Проблемными оказались головки накопителя, точнее — парковочные усики. На вершине головки находятся небольшие выступы, которые держат блок магнитных головок в «растопыренном» состоянии, когда головки попадают в парковочную зону. У большинства современных HDD парковочная зона организована как пластиковая парковочная рама, на которую и паркуются головки.

Если головки перекосит при парковке (что случается исключительно редко), или если пользователь решит запарковать застрявшие на поверхности головки (что случается намного чаще), то их парковочные усики могут искривиться, и при следующем включении диска могут начать повреждать поверхность.

Нижние парковочные усики в этом блоке магнитных головок искривлены, что приводит к зацарапыванию поверхности.

Ситуация усугубляется тем, что одна из головок нижней пары сорвана (что хорошо видно на фото выше), и сорванная головка также царапала поверхность, но совсем по другому, более грубо. Поэтому в нашем заказе поверхности оказались повреждены двумя разными способами: «мягкие» концентрические царапины парковочными усиками и серьезные концентрические запилы сорванной головкой.

Поэтому работы пришлось проводить в три этапа. На первом этапе мы сделали полную посекторную копию единственной не пострадавшей поверхности.

Затем, на втором этапе работ, были сделаны посекторные копии с тех поверхностей, которые пострадали от загнутых парковочных усиков. При этом было довольно большое количество дефектных секторов, которые затем перечитывались (если это было технически возможно).

На третьем этапе вычитывалась запиленная поверхность — точнее, та ее область, которая не попадала в запил.

Данные из этого накопителя удалось извлечь почти на 70%, что является весьма неплохим результатом при таких повреждениях.

Simmtronics: восстановление информации

Simmtronics — это индийская компания, основными направлениями деятельности которой являются производство твердотельных дисков, флешек и оперативной памяти. Кроме того, Simmrtonics занимается рефарбом жестких дисков.

Что такое рефарб? Это когда приобретается партия устройств (не обязательно жестких дисков, это могут быть вообще любые девайсы), производится отбраковка того, что в принципе нельзя починить, а все остальное пускается в ремонт. После этого свежеотремонтированные устройства получают собственные наклейки Simmtronics и уходят в продажу.

Перемаркированные диски время от времени доставляют нам определенные проблемы, так как в целях ремонта могут иметь программно отключенные головки, зоны, и даже целые магнитные пластины. Это делает несколько более затрудненным поиск совместимых запчастей.

Однако восстановление данных с таких устройств все же в подавляющем большинстве случаев возможно.

Накопитель на фотографиях ниже прибыл на восстановление данных с типичной для дисков этого производителя проблемой: ошибки в служебной области, приводящие к невозможности нормального старта диска. Восстановить с него данные удалось практически на 100 процентов.

Почему восстановить данные после постороннего вмешательства всегда дороже?

Время от времени к нам поступают в работу накопители после постороннего вмешательства. Такое вмешательство можно достаточно условно разделить на 5 основных типов:

  • Попытка замены платы электроники
  • Попытки пайки электронных компонентов платы электроники
  • Вскрытие гермозоны накопителя «чтобы посмотреть что там сломалось / почему он стучит»
  • Вскрытие гермозоны накопителя и попытка замены головок, шпинделя и т.п.
  • Все вышеперечисленное вместе

Как правило, это вмешательство не приводит к положительному результату (иначе обращений в нашу лабораторию не было бы — данные были бы восстановлены), обычно последствия диаметрально противоположные — накопитель повреждается (и порой так сильно, что сама возможность восстановления информации исчезает).

Накопитель был открыт пользователем, головки переломаны с использованием пассатижей, которыми пользователь пытался «выровнять» головки. Все это привело к удорожанию данного заказа в три раза относительно базового прайса.

Для того, чтобы восстановить данные с устройства, которое до поступления к нам подверглось постороннему вмешательству, нам приходится сначала устранить последствия этого вмешательства, и лишь затем уже приступать непосредственно к работам по спасению данных. Очевидно, что устранение последствий постороннего вмешательства — работа, и работа сложная. Также очевидно, что эта работа не может проводиться бесплатно, ведь никто не заставлял владельца устройства проводить это самое постороннее вмешательство.

Как правило, если устройство попадает в наши руки без попыток «разобраться самостоятельно», восстановление с него данных возможно по стандартным протоколам и по стандартному прайс-листу. С таким устройством все понятно: вот неисправность, вот перечень процедур по ее устранению, вот смета. И результат обычно хорошо прогнозируемый и предсказуемый.

Давайте на простом примере я поясню, почему происходит значительное удорожание работ и снижение шансов на успех при непрофессиональном (назовем это так) вмешательстве. Для этого смоделируем следующую ситуацию.

Компьютер пользователя отключился, и больше не включился. При подаче питания внутри компьютера раздаются щелчки. Пользователь разобрал компьютер, и обнаружил, что щелчки доносятся из жесткого диска. Пользователь обратился с запросом в Google, поисковик выдал несколько видео, включая видео с рекомендацией разобрать жесткий диск и поправить положение головки.

Пользователь последовал инструкциям из этого видео, открыл жесткий диск на столе в своем доме, и, пользуясь обычной отверткой, пошевелил головки на парковочной раме. После этого он накопитель закрыл и попытался запустить. Естественно, это не помогло. В результате пользователь обратился к нам за профессиональной помощью.

В случае, если бы пользователь сразу обратился к нам, порядок работ был бы следующим:

  1. Исследование гермозоны накопителя.
  2. Подбор совместимых запчастей.
  3. Замена головок накопителя.
  4. Подготовка накопителя к вычитыванию.
  5. Вычитывание накопителя на специальном стенде.

С учетом того, что накопитель был вскрыт до нас и внутри проводились довольно грубые, непрофессиональные действия, теперь порядок работ будет таким:

  1. Исследование гермозоны накопителя.
  2. Очистка гермозоны от привнесенной грязи (жир, отпечатки пальцев) с использованием специальных химикатов.
  3. Очистка гермозоны от привнесенной пыли продуванием химически чистым азотом.
  4. Анализ блока магнитных головок накопителя на предмет его деформаций.
  5. В случае обнаружения деформаций блока магнитных головок, принятие превентивных мер во избежание выхода из строя новых головок и во избежание запиливания магнитных поверхностей.
  6. Поиск совместимых запчастей.
  7. Замена блока магнитных головок.
  8. Подготовка диска к вычитыванию, включение технологического режима и использование настроек максимально щадящих накопитель при чтении. В некоторых случаях может потребоваться даже настройка высоты парения головок над поверхностью.
  9. Вычитывание накопителя с постоянным ручным контролем его состояния.

Как видим, в работе появились четыре трудоемких и, что самое неприятное, ресурсоемких этапа, которых не было бы, если бы восстановление данных происходило исходно без непрофессионального вмешательства. Однако проблема не только в трудоемкости, но также и в том, что для одного из этапов потребуется использование дорогой и, что самое неприятное, весьма токсичной химии.

Все это удорожает работы в разы, а в некоторых случаях особенно обширных повреждений — на порядки.



Мы принимаем к оплате | We accept payments


Мы стажировались и работали в странах | We worked or practiced in following countries

Translate »