Задача. Восстановить данные с жесткого диска Toshiba 5 TB
Описание проблемы. Накопитель поступил в работу во вскрытом состоянии и с посторонними звуками из гермозоны: стук.
Результаты диагностики. Для диагностирования неисправности диска произведено его вскрытие в ламинарном шкафу класса чистоты 100 и детальый осмотр узлов и агрегатов с использованием микроскопа. Выяснено, что диск подвергся непрофессиональной попытке восстановления информации, которая привела к невозможности дальнейших работ в этом направлении.
Результат.
Данные восстановить невозможно
Особенности заказа.
Диск поступил в работу уже открытым в другом месте. В таких случаях мы очень внимательно изуаем поступивший накопитель, так как очень часто его вскрытие в неподобающих условиях приводит к тяжелым последствиям. Этот случай не оказался исключением.
В диске имеется 5 магнитных пластин и 10 головок. После вскрытия, очевидно, их пытались исправить механически (головки были спутаны на гребенке парковочной рампы), а затем- запускать диск. Этого ни в коем случае нельзя делать, так как если головки разрушены (а спутанные на гребенке головки и означает, что они разрушены), то выставить позицию слайдера каждой головки в полном соответствии с ее заводским положением не представляется реальным. При попытке исправления головок (скорее всего, их просто «рассовали» по своим пазам в гребенке парковки) тонкая геометрия головок не восстанавливается, слайдер остается искривленным, и после включения головки начинают цеплять поверхность.
Падение головок на поверхность привело к запарапыванию, а впоследствии — и запиливанию диска. Как итог: поверхность повреждена более чем на 80%, восстановление данных невозможно. На фото — состояние одной из десяти головок этого диска
Для того, чтобы провести успешное и безопасное восстановление информации, я настоятельно рекомендую выполнять все мои инструкции, здесь написанные, точно и безоговорочно. Любое отклонение от них может стоить вам данных и привести к тому, что восстановить их будет нельзя даже профессионалу. Поэтому если вы не уверены в том, что сможете исполнить все написанное точно так, как написано, если даже чуть-чуть сомневаетесь – не рискуйте, отнесите диск мне. Я заработаю немного денег, вы получите свои данные в целости, сохранности и абсолютно безопасно – все будут довольны. Все, что вы будете делать в рамках самостоятельного восстановления ваших данных, вы делаете на свой страх и риск.
Список необходимого
Что нам понадобится для успешного и безопасного восстановления информации?
1. Диск, с которого удалили данные, отформатировали, потеряли (переразметили) раздел и т.п.
2. Другой (физически другой!!! это очень важно) диск для записи восстановленных данных.
3. Загрузочная флешка сисадмина.
С диском, с которого восстанавливаем данные, все понятно. Обычно он в системе один (физически) и обычно разбит на пару разделов (системный и с данными). Удалили, форматнули, переразметили и т.п. Обнаружили это – вырубаем компьютер и больше с этого диска не грузимся. Почему? Ну, например, файл подкачки, даже если вы ничего не будете записывать на диск, будет использовать «пустые» области диска – а значит, те, где недавно были ваши удаленные файлы. Или после формата вас может начать преследовать искушение незамедлительно установить программу для восстановления данных, убивая ваши же собственные данные. Ну и так далее. В общем, с диска грузиться категорически нельзя.
Другой диск, на который будем копировать восстановленные данные, нужен для того, чтобы не копировать данные на тот диск, с которого данные восстанавливаем. Простая логика. Почему? Да потому что если мы будем писать данные туда же, откуда мы их восстанавливаем, результат вас совсем не обрадует. Короче, скопируем мы может пару десятков файлов нормально, а потом пойдет мусор без возможности отката. Вот тут подробно.
Качаем из интернетов образ загрузочной флешки сисадмина (например, WinPE), на котором уже установлено что-то для восстановления данных (я бы рекомендовал флешку Сергея Стрельца). С помощью программы Rufus записываем этот образ на флешку (обязательно перед этим убедившись, что ничего нужного там нет). Внимание! Скачивать и записывать эту флешку надо на другом компьютере. Помните, что ваш жесткий диск, с которого пропали данные, трогать нельзя!
Все три предмета готовы? Тогда приступаем.
Порядок действий
Загружаем компьютер, в качестве загрузочного устройства указав записанную флешку сисадмина (в ноутбуках при старте внизу экрана обычно показывается сообщение о том, какую кнопку надо нажать, чтобы выйти в загрузочное меню; то же самое и на современных настольных компьютерах). Диск, с которого надо восстановить данные, должен быть подключен. Диск, на который будем копировать данные, тоже должен быть подключен.
Первый лайфхак: для того, чтобы не перепутать диски и не начать восстанавливать данные с диска для данных, его метка тома должна быть соответствующей. Например, отформатируйте его с меткой тома «FOR RECOVERED DATA». Так вы точно его не перепутаете.
Второй лайфхак: Диск для данных нужно отформатировать как раздел NTFS. Не используйте файловые системы FAT и extFAT, у них имеется куча ограничений – а оно нам надо при восстановлении наших файлов?
Загрузились? Выбираем программу для восстановления, запускаем ее. На советуемой мной флешке имеется R-Studio – вот ее и будем использовать. После запуска программа покажет подключенные к системе диски. Отмечаем тот, с которого нужно восстановить данные, нажимаем правую кнопку мышки и выбираем «Сканировать». Все, теперь можно отдыхать. Нужно дождаться окончания сканирования. Чем больше диск, тем больше на это уйдет времени. Запаситесь терпением.
Наконец, процесс сканирования завершен. Программа покажет разделы, которые она нашла на диске, а также файлы, найденные по сигнатурам. Ну и теперь ваша задача – выбрать из найденного то, что нужно восстановить. Ходим по дереву файлов и папок, смотрим в найденном по сигнатурам, отмечаем то, что нам нужно. После того, как нашли все, что нужно, наступает самый ответственный момент – копирование восстановленного.
Правым кликом мышки выбираем меню «Восстановить отмеченное» (ну или просто «Восстановить», если вы решили восстановить все) и вот тут – самое главное! В верхней строчке (адресная строка) выбираем тот самый другой диск, который приготовлен нами для копирования восстановленного. Будьте предельно внимательны – выбрав «не тот» диск, вы рискуете навсегда лишиться возможности восстановить ваши данные.
Затем установите во вкладке «Дополнительно» настройки так, как показано на последнем скриншоте – и запускайте операцию копирования. Установленные настройки при встрече удаленного файла автоматически восстановят его имя заменой первого символа (это делается для того, чтобы вы могли отделить восстановленные удаленные файлы от, скажем, восстановленных результатов форматирования), уберут атрибуты «скрытый» (если они были; это делается для того, чтобы в папке с восстановленными данными были видны все файлы) и пропустят файлы с такими же именами (если, скажем, файл уже существует). Кстати, последнее можно и по-другому организовать – например, переименовывать файлы с такими же именами, если вы не знаете, одна копия файла у вас была или несколько.
Вот такой вот простой способ восстановления информации, если она была удалена, раздел отформатирован или переразмечен.
Если же вы не хотите рисковать, то, скажу я вам, это правильно. У нас есть и проверенные жесткие диски, куда мы восстановим ваши данные, и громадный опыт (больше 25 лет – специалистов с таким опытом в мире немного), и программное обеспечение (как собственное, так и приобретенное). И цены у нас совсем не кусаются. Поэтому звоните, приходите и будьте уверены – мы сделаем все самым наилучшим образом, ведь это наша работа.
Кстати, мы крайне не рекомендуем использовать нелицензионное, сиречь пиратское, ПО, которое распространяется на приведенном в качестве примера диске сисадмина. Вы всегда можете выбрать другое, по настоящему бесплатное ПО для восстановления данных – например, R-Saver.
Задача. Экстренно восстановить данные с дискового массива RAID-5
Описание проблемы. Массив поступил в виде дисков (не в составе сервера), без какой-либо нумерации или пометок. Массив вышел из строя в результате аварийного отключения питания. Тип интерфейса: SAS.
Результаты диагностики Диагностировано, что все диски массива исправны. Скорее всего, неисправен контроллер массива, но он не был нам предоставлен. Принято решение собирать массив программными средствами.
Необходимые для восстановления информации процедуры.
1) Определение конфигурации массива.
2) Сборка массива.
3) Извлечение пользовательских данных.
Результат.
Данные восстановлены полностью.
Особенности массива.
Поскольку данные с данного массива требуются экстра-срочно, сами диски исправны, заказчиком было принято решение для экономии времени не производить процедуру обязательного создания резервных копий дисков. Работы велись на дисках заказчика, подключенных к системе в режиме «read only».
А что можно сказать про самые-самые устройства для хранения данных, самые-самые случаи восстановления данных, самые-самые интересные факты из этой области? Эта подборка – для вас.
Самый маленький жесткий диск. Диск форм-фактора 0.85 дюйма. Диски этого размера начали массово продаваться в 2007 г. корпорацией Toshiba. Исходя из размеров, основным сегментом, куда планировалось применять эти диски, были мобильные устройства – и действительно, их ставили даже в мобильные телефоны (например, Nokia N91). Со временем NAND-память стала сильно дешеветь, и рентабельность производства таких устройств упала. В настоящее время эти диски иногда поступают на восстановление данных, главным образом из профессиональных видеокамер.
Самый емкий носитель информации. В 2016 г. компания Amazon представила диск на колесах. Емкость устройства составила на то время рекордные 100 петабайт; в настоящее время емкость увеличена еще на 25%. Устройство представляет собой фургон размером с морской контейнер, который установлен на шасси мощного тягача. Этот диск на колесах был назван компанией Amazon Snowmobile за белоснежный цвет гаджета на колесах. Для чего потребовалось создание такого устройства? С увеличением объема данных их передача становится слабым местом всей системы. Даже при гигабитной сети передача одного петабайта данных займет не менее 20 лет. Snowmobile перевезет тот же объем информации за 2 месяца. Это достигается очень просто: скорости локальных сетей гораздо выше, чем скорость интернет-соединения, и снежная машина, подключившись к локальной сети компьютера, с которго требуется забрать данные, выкачивает их на максимальной возможность скорости до 100 Гигабит/с; на стороне сервера соединение еще быстрее, поэтому передача данных на результирующий сервер обычно занимает меньше времени.
Самый первый жесткий диск. Он же и самый тяжелый. Он же самый большой. Это диск IBM 350, представленный 4 сентября 1956 г. Это был громадный шкаф, шириной 1.5 м, высотой 1.7 м и длиной 74 см. Вес устройства составлял почти тонну. Внутри устройства находилось 50 «блинов» диаметром 61 см. Несущим данные слоем была специальная краска, содержавшая мелкодисперсные частицы ферромагнитных элементов. Объем диска составлял 3.75 Мбайт.
Самый первый жесткий диск форм-фактора 3,5 дюйма был выпущен корпорацией Seagate, его объем равнялся 5 Мбайт, а стоимость составляла около 1500 долларов США. Именно этот диск стал эталоном при создании компьютеров архитектуры IBM AT и IBM XT, а также при составлении первых стандартов передачи данных, принятых основными игроками на рынке IT в то время. ST-506 (именно так назывался тот жесткий диск), без преувеличений, является самым-самым важным устройством в череде продуктов этой компании и всей индустрии, так как позволил ее стандартизировать.
Самый первый жесткий диск для ноутбука (форм-фактор 2,5 дюйма) был выпущен также компанией Seagate, произошло это в 1991 г., а объем такого накопителя составлял 40 Мбайт.
Самые известные жесткие диски Barracuda производства компании Seagate ведут свою историю с 1992 года, когда был выпущен первый диск под этим брендом. Существенным отличием нового диска была скорость вращения его шпинделя – это был самый-самый первый жесткий диск со скоростью вращения шпинделя 7200 оборотов в минуту. Емкость первых накопителей Seagate Barracuda 2LP составляла 1 и 2 Гбайт: это был самый-самый первый жесткий диск, перешагнувший предел в 1 Гбайт.
Самые оборотистые жесткие диски были разработаны компаниями Seagate (накопители Seagate Cheetah со скоростью вращения шпинделя вначале 10 000 оборотов в минуту, а затем и 15 000) и Western Digital (накопители Raptor со скоростью вращения шпинделя 15 000 оборотов в минуту). Первые изготавливались с интерфейсом SCSI, а затем и SAS, вторые – традиционный интерфейс SATA.
Самая первая флешка была создана израильской компанией M-Systems в 1999 году (апрель 1999 г. – официальная регистрация патента). В 2000 г. была выпущена первая серийная флешка емкостью 8 Мбайт, которая стоила 50 долларов США. Немного позже, к концу 2000 г., были выпущены флешки емкостью 16 и 32 Мбайт. Годом позже компания Mitsubishi приступила к выпуску первых карт памяти; карта Mitsubishi SRAM Card выпускалась в редакциях 1, 2 и 4 Мбайт и имела интерфейс PCMCI.
Самый дорогой жесткий диск для персонального компьютера стоил 4999 долларов США, это был диск емкостью 18 Мбайт производства компании North Star Horizon. Только подумайте – 1 мегабайт дискового пространства стоил когда-то около 280 долларов США! За такие деньги сейчас вы можете приобрести жесткий диск объемом 14 Тбайт.
Самое известное восстановление данных. В 2008 году американским специалистом по восстановлению данных Джоном Эдвардсом, работающим в компании Kroll Ontrack, были восстановлены примерно 80% данных с накопителя Seagate емкостью 400 Мбайт, пострадавшего в результате крушения шаттла Columbia. Работа по восстановлению данных с обугленного и сильно пострадавшего при падении с высоты в 63 километра жесткого диска заняла около 5 лет; стоимость этой работы не разглашается, однако, исходя из того, в каком состоянии находились пластины диска (диск был сильно оплавлен, а пластины сплавлены вместе и представляли собой почти монолитную структуру), можно предположить огромный объем научных исследований, направленных не только на безопасное разделение потоков данных на разных сторонах пластин, но также и на возврат намагниченности пластин, так как при взрыве шаттла накопитель подвергся воздействию температур в несколько тысяч градусов и неизбежно прошел точку Кюри, а стоимость комплекса таких исследований с последующей реализацией их в виде технологии восстановления данных можно оценить в несколько десятков миллионов долларов США. Все это позволяет заключить, что для некоторых компаний по восстановлению данных в настоящее время перегрев диска и его температурное размагничивание не являются препятствием для восстановления информации.
Самый удачный жесткий диск и самый неудачный жесткий диск в истории индустрии по производству HDD по роковому стечению обстоятельств – одно и то же устройство. Это диск форм-фактора 3.5 дюйма компании Fujitsu, выпускавшийся под названием Fujitsu MPG. Диски этого семейства имели емкость 10, 20, 30 и 40 Гбайт (от 1 до 4 головок, максимально 2 пластины) и обладали фантастическим качеством механики. Довольно часто при таком объеме эти диски не содержали дефектов в заводском дефект-листе (Р-лист), а значит, их поверхности были абсолютно идеальными. То же самое можно сказать и о их головках и системе позиционирования. Использованная технология адаптивных параметров подстройки головки под трек с отклонениями от абсолютного круга (RRO – Repirable Run Out) делала работу системы позиционирования исключительно точной и абсолютно надежной. К сожалению, при изготовлении этих дисков была совершена роковая ошибка – в их основной микросхеме (микроконтроллер) был использован фосфор-содержащий компаунд, который накапливал воду из окружающего воздуха, и в один «прекрасный» момент диск переставал определяться в системе. Прогрев основной микросхемы часто приводил диск в работоспособное состояние, но на очень непродолжительное время. Количество отказов этих дисков носило столь массовый характер, что корпорация Fujitsu отозвала с рынка все проданные устройства, а подразделение, выпускавшее трехдюймовые жесткие диски, было закрыто и не функционирует до сих пор. Ходили неподтвержденные слухи, что управляющий директор этого подразделения сделал харакири, но они не были официально подтверждены.
Самое курьезное восстановление данных в моей практике случилось совсем недавно, месяца два назад. На восстановление информации прибыл жесткий диск для ноутбука Western Digital емкостью 500 Гбайт. В качестве донора был предложен такой же диск, но емкостью 250 Гбайт. Клиент настаивал на том, что ему где-то кто-то определил, что у диска неисправна головка номер 1, то есть вторая снизу, а остальные головки исправны. Поэтому заем тратить на донора на 10 баксов больше, если у этого диска в 250 Гбайт имеется две головки, и как раз – 0 и 1. Определенная доля истины в словах заказчика имелась, да и диагноз оказался правильным, поэтому я отчитал больной диск по трем исправным головкам, затем «уронил» его в сон, сделал замену головок из донора (только 2 головки из 4), стартанул «уснувшую» плату и, не без танцев с бубном, считал последнюю поверхность. Столь прошаренного и экономного клиента я встретил в первый раз в своей жизни =).
Самый наглый обман с емкостью накопителей до сих пор демонстрируют почти все производители этих устройств. Для расчета емкости они используют значение 1000 Мбайт на 1 Гбайт, хотя на самом деле в гигабайте 1024 Мбайта. Это приводит к тому, что емкость устройства, которое вы покупаете, сильно отличается от заявленной. Скажем, если на жестком диске написано 500 Гбайт, то по факту он будет отформатирован на 465 Гбайт. Увы, но ситуация не меняется десятилетиями: маркетологам намного проще делать громкие заявления об очередном прорыве емкости, оперируя тысячамегабайтным гигабайтом, чем реальным, 1024-мегабайтным.
Самый оптимальный режим работы жесткого диска. Корпорация Google в 2007 г. проанализировала работу около 100 000 жестких дисков в своих хранилищах и выяснила, что наименьшее количество отказов и наибольшую производительность обеспечивают диски, работающие при температуре около 40 градусов по Цельсию. Смещение температурного режима в направлении увеличении температуры заметно снижает эффективность работы дисков уже при превышении оптимального значения на 5 градусов; то же самое наблюдается и при уменьшении температуры, но уже на 10 градусов.
Самый странный закон Мура: объем жестких дисков на протяжении всей их истории ежегодно удваивается. В текущем году максимальный объем жестких дисков в сегменте настольных компьютеров в продаже составляет уже 14 Тбайт, а значит, что к концу 2019 г. в продаже должны появиться диски емкостью 28 Тбайт. И это вполне реальная перспектива, так как использование технологии двойного актуатора MACH.2 и разработанной корпорацией Toshiba технологии записи MAMR позволяет увеличить в первом случае количество работающих в диске пластин в 2 раза, а во втором случае – увеличить плотность записи минимум на 50%.
Самый большой разброс в объеме жесткого диска получается, если сравнить современный емкий накопитель (14 Тбайт) с первым в мире жестким диском (3.75 Мбайт). Разница между этими дисками составит 3 823 047 раз. При этом современный накопитель больше чем в тысячу раз легче первого и почти в 10 000 раз меньше его по размерам. Если же рассчитывать разницу между современными SSD серверного сегмента (100 Тбайт), то разница составит больше 27 000 000 раз! Таким образом, за почти 60 лет истории разработок и производства жестких дисков их объем был увеличен в миллионы раз, а размеры уменьшены в тысячи раз. Потрясающе, не правда ли?
Самый первый стандарт в области передачи данных принадлежит компаниям Western Digital и Compaq. Этот стандарт носил название IDE (Integrated Drive Electronics) и был внедрен в 1986 г. До сих пор по названию этого стандарта жесткие диски с параллельным интерфейсом часто называют IDE-дисками.
Самый первый АТА-стандарт, т.е. стандарт передачи данных в его современном виде, появился в 1994 г. и носил название АТА-1. Разработка АТА-стандартов завершилась в 2002 г. с выпуском седьмой версии стандарта (АТА-7). С 2003 г. развивается стандарт SATA, накопители с интерфейсом PATA более не выпускаются. В настоящее время активно развивается стандарт SATA 3.2, позволяющий поднять производительность интерфейса до 16 Гбит/с.
Самый быстрый интерфейс накопителей данных на настоящий момент – интерфейс NMVe. Диски с этим интерфейсом работают на скорости PCI-Express шины, их производительность достигает сотен тысяч IOPS при пропускной способности несколько десятков Гбит/с.
Самый вредный миф о восстановлении данных заключается в том, что жесткий диск можно просто открыть, и ничего при этом не случится. На практике при открывании жесткого диска в условиях, далеких от необходимых (вне чистого бокса, без предварительной очистки корпуса и т.п.) в гермозону накопителя немедленно попадает огромное количество мусора, которое приводит к очень быстрому выходу диска из строя в случае его включения.
Самый широко распространенный интерфейс накопителей информации на текущий момент – интерфейс SATA. Более 60% всех устройств этого типа оснащены данным интерфейсом. Второй по распространению – интерфейс USB, им оснащено около 25% всех устройств данного типа. Интерфейсы других типов (SCSI, SAS, Fibrechannel, Thunderbolt и т.п.) составляют в современных устройствах хранения данных не более 15%.
Задача. Восстановить данные с внешнего жесткого диска WD Elements SE
Описание проблемы. Накопитель поступил в работу с диагнозом «не определяется системой».
Результаты диагностики. Для диагностики из внешнего корпуса был извлечен находившийся внутри жесткий диск и исследован с использованием РС-3000. Выяснена стандартная для дисков Western Digital проблема заторможенной активности микропрограммы (slow responding).
Необходимые для восстановления информации процедуры.
1) Подбор и адаптация SATA-платы для накопителя.
2) Установка SATA-платы на неисправный диск.
3) Решение проблемы заторможенной активности микропрограммы.
4) Запуск накопителя в нормальном режиме.
5) Подготовка накопителя к вычитыванию данных.
6) Вычитываение данных.
7) Извлечение данных из полученного образа.
Результат.
Данные восстановлены полностью.
Особенности заказа.
Проблемы купирования фоновых активностей микропрограммы начали возникать, когда в серию пошли диски с многозадачными операционными системами. Микропрограмма современного жесткого диска — это не просто набор инструкций и таблиц, это подобие операционной системы (например, у Seagate она так и называется — MOS (My Operatig System) или DOS (Disk Operating System)). Диск постоянно проводит какие-то операции в фоне: сбор и обновление SMART-статистики, дефектоскопию, управление обнаруженными нестабильными областями поверхности, и т.п. Проблемы возникают тогда, когда количество фоновых операций выходит за рамки выделенных под эту активность ресурсов. В этом случае диск вынужден ставить внешние операции, как наименее приоритетные, в режим ожидания, и заниматься только внутренними, более приоритетными, операциями. Нормальное чтение таких дисков возможно только после модификации микропрограммы — отключения фоновых процессов или их перевода в режим ожидания.
Задача. Восстановить данные с твердотельного диска Samsung 256GB mSATA SSD
Описание проблемы. Накопитель поступил с проблемой «не определяется в системе».
Результаты диагностики. Для диагностики накопитель был исследован с помощью ПАК РС-3000 и специализированного переходника производства АСЕ Lab. Выяснено, что накопитель не выходит из состояния «занят». Причина: повреждение таблиц трансляции в силу сильного износа NAND-микросхем.
Необходимые для восстановления информации процедуры.
1) Перевод накопителя в Safe Mode. Загрузка в накопитель лоадера, инициализация накопителя.
2) Построение системы трансляции с помощью ПАК РС-3000.
3) Клонирование накопителя в технологическом режиме.
4) Извлечение данных из полученного образа.
Результат.
Данные восстановлены полностью.
Особенности заказа.
Твердотельные накопители имеют характерные только для них виды неисправностей, одна из наиболее распространенных — «вечно занят». Данная проблема возникает тогда, когда NAND-микросхемы сильно изнашиваются, и системы коррекции ошибок накопителя перестают справляться с потоком ошибок. Обработка этого потока и «вешает» диск.
Задача. Восстановить данные с жесткого диска Toshiba MK6459GSX
Описание проблемы. Накопитель поступил с проблемой «не определяется в системе».
Результаты диагностики. Для диагностики накопитель был исследован с помощью ПАК РС-3000. Выяснено, что накопитель не раскручивает шпиндельный двигатель, при этом плата электроники исправна. Тестирование ПЗУ показало порчу его части.
Необходимые для восстановления информации процедуры.
1) Отпаивание микросхемы ПЗУ от платы элктроники.
2) Исследование содержимого ПЗУ с помощью шестнадцатеричного редактора, поиск проблемных областей.
3) Ремонт содержимого ПЗУ в шестнадцатеричном редакторе.
4) Заливка полученного отремонтированного ПЗУ в микросхему, припаивание ее на плату электроники.
5) Запуск накопителя в нормальном режиме, копирование данных на результирующий диск.
Результат.
Данные восстановлены полностью.
Особенности заказа.
Порча содержимого ПЗУ — редкая и сложно диагностируемая проблема жестких дисков. При этом диски могут вести себя по-разному: от полной «тишины» до стуков и других посторонних звуков из гермозоны при запуске диска. Очень асто проблемы ПЗУ неопытными специалистами диагностируются как проблемы платы электроники или блока магнитных головок, что приводит к неправильным процедурам «лечения» и даже к отрицательному результату восстановления данных.
Почему нельзя ронять жесткий диск? Вроде бы современные накопители на жестких магнитных дисках анонсируются как ударостойкие, выдерживающие серьезные нагрузки, но… К сожалению, как бы ни старались производители увеличить ударостойкость дисков, в устройстве, где имеются две оси, большая масса крутящихся кусков стекла и пружинящие головки, удар всегда будет сопровождаться какими-нибудь деформациями, повреждениями или разрушениями.
В этом видео мы рассказываем и показываем, что бывает с жестким диском, если его уронить.
Предупреждаю, что повторение наших опытов может привести к выходу из строя вашего диска и, с большой долей вероятности, к потере данных с него. Поэтому настоятельно не рекомендую повторять наши опыты на устройствах, которые для вас ценны или содержат важные для вас данные.
Задача. Восстановить данные с жесткого диска ST9500423AS
Описание проблемы. Накопитель поступил в работу со следами вскрытия. Владелец диска пытался самостоятельно заменить плату электроники и БМГ.
Результаты диагностики. Для диагностики накопитель был исследован в чистой зоне (ламинарный шкаф вертикальной тяги класса 100). Обнаружены пыль и грязь на поверхности. Для восстановления данных требуется очистка гермозоны и замена БМГ.
Необходимые для восстановления информации процедуры.
1) Подбор и адаптация донорского устройства.
2) Мероприятия по очистке гермоблока от пыли и грязи.
3) Замена блока магнитных головок.
4) Запуск накопителя в технологическом режиме.
5) Подготовка накопителя к вычитыванию данных.
6) Вычитываение накопителя в технологиеском режиме.
7) Извлечение данных из полученного образа.
Результат.
Данные восстановлены с минимальными потерями (менее 0.2%).
Особенности заказа.
Накопитель поступил в работу уже открытым в условиях, несовместимых с соблюдением необходимого класса чистоты. Очистка гермозоны проводилась в три этапа: механическая очистка продувкой сжатым газом; демонтаж пакета магнитных пластин и отмывка следов жира и грязи с верхней пластины; просушка пластины и доотмыв остатков грязи с пластины. Контроль за чистотой поверхностей осуществлялся с использованием микроскопа.
Задача. Восстановить данные с жесткого диска Seagate SkyHawk ST4000VX000
Описание проблемы. Накопитель из видеорегистратора HikVision. Диск исправен; владелец случайно отформатировал диск в регистраторе. Требуется восстановить видеозаписи за определенный период.
Результаты диагностики. Для диагностики накопитель был исследован с помощью специализированного ПО. Искомые видеозаписи были обнаружены.
Необходимые для восстановления информации процедуры.
1) Сканирование накопителя с помощью ПО для восстановления данных с DVR.
2) Сортировка обнаруженных видеозаписей по дате создания.
3) Копирование нужных заказчику данных на накопитель-приемник.
Результат.
Данные восстановлены полностью.
Особенности заказа.
Стационарные видеорегистраторы имеют большое количество (до 20 только более-менее широко распространенных) форматов записи данных. Основная сложность восстановления информации с таких устройств — точное определение формата записи.