Запилы и царапины поверхностей жесткого диска: почему они так опасны?

Меня часто спрашивают: а чем так опасны эти запилы и царапины на поверхности жесткого диска? Вы же профессионал, наверняка есть технологии, позволяющие вычитать данные и с запиленных или зацарапанных поверхностей — почему вы так их не любите?

Да, конечно, технологии имеются. Но давайте будем объективны: из области запила или царапины данные нам уже не достать, так как в этом месте магнитная поверхность разрушена (конечно же, вместе с данными). Кроме того, вокруг самой царапины определенная область (в каждом индивидуальном случае — своего, индивидуального, размера) не может быть прочитана в силу термического разрушения намагниченности (когда поверхность «пилится», она сильно нагревается и проходит точку Кюри). Наконец, третье, и самое главное — при запиливании или зацарапывании образуется масса мелких частиц (стружка, опилки), которые начинают летать внутри гермоблока и могут находить себе «пристанище» не только на внутреннем фильтре, но также и на поверхностях диска, головках и т.д.

Не стоит забывать и о том, что вычитывание информации с поврежденных поверхностей — значительно более дорогостоящая процедура, чем чтение неповрежденных пластин, в силу применения тех самых технологий (первое) и в силу необходимости использования большего количества запчастей (второе). Накопитель должен быть обязательно очищен от опилок и стружки, которая появилась в нем в результате запиливания.

Об опилках и стружке я и хочу поговорить поподробнее, на одном весьма показательном примере.

Запиленный жесткий диск

Специалист по восстановлению информации с многолетним стажем, такой, как я, относительно легко определяет жесткий диск, в котором происходит процесс запиливания или зацарапывания поверхностей, по звуку. Передать это словами сложно — нужно иметь опыт. Скажем так, звук жесткого диска, который начал запиливаться, начинает разительно отличаться от нормального в сторону шипений, свистов и частых ударов, сливающихся в резонирующие вибрации.

Такой накопитель поступил к нам на днях. При малейшем подозрении на запиливание или зацарапывание накопитель подвергается тщательному осмотру — особенно его блок магнитных головок. Осмотр выявил типичную картину быстро прогрессирующих повреждений.

Нижняя головка (head 0)

Как правило, запиливание диска начинается с одной поверхности, и затем, по мере накопления внутри гермозоны свободно перемещающихся частиц, перекидывается на другие. По статистике, этот процесс чаще начинается или с верхней, или с нижней головки — просто потому, что и та, и другая ограничены с одной стороны (верхняя — крышкой гермоблока, нижняя — его дном) — при соударении с таким ограничителем шансы головки на разрушение гораздо больше, чем при соударении расположенных друг напротив друга головок.

В нашем случае все началось с нижней головки. Образовалось два концентрических запила — первый в зоне парковки, второй — в служебной зоне. Головка, которая работала с этой поверхностью, является самой грязной. Опилками покрыта вся ее поверхность, включая слайдер и кронштейн. Пазы слайдера ими просто забиты.

Такие загрязнения очень опасны, так как при работе головка парит над поверхностью на расстоянии в несколько десятков или сотен нанометров — размер опилок значительно больше, а значит, контакт головки и поверхности (через частицы опилок) неизбежен, что обязательно приведет к увеличению разрушений.

Восстановление данных в Бишкеке | Data Recovery Bishkek
Нижняя головка, с которой, собственно, и начались проблемы диска. Опилками покрыта вся ее поверхность.
Восстановление данных в Бишкеке | Data Recovery Bishkek
Опилки в верхней части слайдера нижней головки накопителя.
Восстановление данных в Бишкеке | Data Recovery Bishkek
Опилки на кронштейне нижней головки накопителя.

Головка 1

Следующая в пакете головка находится с другой стороны магнитной поверхности; это головка 1. Разрушения по ее поверхности намного меньше и имеют явно сгенерированную проблемами по головке 0 природу.

Нижняя поверхность, когда по ней начались разрушения, стала активно продуцировать опилки и стружку; большая часть этих «материалов» оставалась на неисправной поверхности и оседала на ее головке, но вскоре, после того, как объем выделяемых нижней поверхностью частиц превысил критическое значение, они начали распространяться внутри гермоблока. Часть их оседала на фильтре гермозоны, другая часть продолжала «путешествовать» внутри, оседая на головках, поверхностях и стенках гермозоны. По простой теории вероятности, чем ближе к разрушениям расположен объект, тем больше шанс того, что продукты разрушения покроют именно его; именно по этой причине на головке 1, самой близкой к нижней головке пакета, опилок больше, чем на других, расположенных дальше, головках.

Восстановление данных в Бишкеке | Data Recovery Bishkek
Третья сверху головка накопителя (вторая снизу).
Восстановление данных в Бишкеке | Data Recovery Bishkek
Опилки на слайдере второй снизу головки.

Головка 2

Расположенная над головкой 1, головка 2 — вторая в пакете сверху и третья снизу. Она находится в одной пазухе с головкой 1 и, по этой причине, должна иметь примерно одинаковые с ней разрушения. В действительности ее разрушения несколько больше.

Прежде всего, бросается в глаза пучок стружки, имеющийся на этой головке. Кроме того, хорошо видны скопления опилок в углублениях слайдера. Основание слайдера в его вершине относительно чистое (относительно предыдущей головки, конечно).

Стружка — это первый признак зарождающегося запила. Головка срезает с поверхности при соударении длинные ленты лубриканта; эта стружка скапливается в той части головки, которая соприкасалась с пластиной. Опилки образуются, когда эта стружка попадает в промежуток между слайдером и поверхностью; здесь стружка измельчается по принципу абразива, и разлетается отсюда по всему гермоблоку. Также, когда слайдер царапает уже те слои, которые находятся под лубрикантом, он выбивает из них опилки.

Восстановление данных в Бишкеке | Data Recovery Bishkek
Следующая за верхней головка накопителя. Пучок стружки, в области вершины слайдера начинают собираться опилки.
Восстановление данных в Бишкеке | Data Recovery Bishkek
Опилки в верхней части слайдера показанной выше головки.
Восстановление данных в Бишкеке | Data Recovery Bishkek
Пучок стружки на показанной выше головке.

Головка 3 (верхняя)

Головка 3 — самая верхняя в пакете. До нее разрушительное воздействие запила должно дойти в последнюю очередь — собственно, так оно и случилось. Слайдер и кронштейн головки чистые от опилок, но имеется пучок стружки. Верхняя поверхность диска не имеет повреждений, следовательно, эта стружка прилетела сюда снизу, с других головок.

Очевидно, что разрушение третьей головки едва началось, поверхность пока еще чистая, но если бы диск продолжал работать, разрушение этой поверхности было бы вопросом времени. Весьма небольшого времени.

Восстановление данных в Бишкеке | Data Recovery Bishkek
Верхняя головка накопителя. Сама головка чистая, но на слайдере накопился пучок тонкой стружки. Это означает, что по этой головке процесс запиливания еще не начался, но вот-вот начнется.
Восстановление данных в Бишкеке | Data Recovery Bishkek
Пучок тонкой стружки по верхней головке.

Заключение

Что можно сказать в заключение? Бывает, что пользователь, сам того не зная, делает восстановление информации невозможным. Описанный выше случай — один из таких.

Диск вначале начал себя странно вести, срывался с рекалибровки, подстукивал и исчезал из системы. Казалось бы — самое время обратиться к специалисту, но хозяин устройства решил иначе. Первое, что он сделал — это подключение диска через другие разъемы (как питания, так и интерфейса). Это не помогло. После этого была запущена утилита проверки диска (Windows CheckDisk), которая, конечно же, начала свою работу — но на физически неисправном диске завершить ее она не могла, циклично обращаясь в адреса, которые не могли быть прочитаны. Как результат — полуживой диск быстро исчерпал остаточный ресурс, нижняя головка упала на поверхность и начала запиливание. Ну а дальше, по мере накопления внутри гермозоны «пиломатериалов», повредились и остальные поверхности.

Вывод из той печальной истории достаточно прост. Если вы видите, что накопитель ведет себя не так, как обычно; если вы слышите из накопителя незнакомые звуки, которых не было раньше — это повод обратиться к специалисту — как минимум позвонить и поинтересоваться, что может означать текущее поведение диска. Это будет бесплатно и убережет вас от потери информации.

Как COVID-19 повлиял на работу специалиста по восстановлению информации

Вот уже третью неделю в Бишкеке продолжается режим чрезвычайного положения, что делает работу многих предприятий невозможной (в силу предписаний комендатуры) или крайне затрудненной (в силу невозможности перемещений). В случае с восстановлением информации мы также столкнулись с определенными проблемами, связанными, прежде всего, с невозможностью личного посещения нашего офиса.

Однако в IT-индустрии все не так плохо, как во многих других отраслях бизнеса, и, с некоторыми оговорками, организовать более-менее качественный сервис по восстановлению информации можно даже в условиях ЧП и пандемии.

Удаленная работа

Довольно приличный пласт заказов на восстановление информации можно обработать удаленно. Это логические заказы — то есть те, где произведено удаление данных или форматирование носителя, потеря данных посредством воздействия вируса, и т.п. Для осуществления работ по такому заказу нужно относительно немного — подсоединить проблемный носитель к компьютеру, имеющему доступ к высокоскоростному интернет-соединению, и дать нам доступ к этому ПК. Мы подключаемся к компьютеру удаленно, анализируем носитель и производим работы по восстановлению информации. В этом случае оплата за нашу работу производится также удаленно — с использованием сервисов PayPal, ЭЛЬСОМ или через банковский перевод.

В некоторых случаях без использования нашего оборудования не обойтись, однако в случае с логическими проблемами можно организовать передачу через сеть Интернет побайтового образа проблемного устройства, а после окончания работ — обратную передачу восстановленных данных. Конечно, это не ускоряет работу, так как на передачу больших объемов данных уходит немало времени, однако, когда других вариантов просто нет, приходится идти по медленному пути.

Физическая передача носителя через курьера

Однако бывают ситуации, когда без физической передачи устройства в нашу лабораторию не обойтись (замечу, что оплата и доставка данных остаются доступными удаленно). Это можно сделать через работающие даже в режиме ЧП курьерские службы.

Поступающие в работу таким образом устройства мы, прежде чем приступить к анализу, обрабатываем 95% этиловым спиртом и выдерживаем в обработанном состоянии не менее 3 часов для того, чтобы полностью исключить возможность какого-либо заражения. По окончании работ неисправное устройство утилизируется, а данные доставляются удаленно. Таким образом, взаимные контакты заказчика и исполнителя и риск заражения исключены.

Итоги

Конечно же, объем обращений по имеющимся каналам связи практически не изменился — я бы сказал, что он даже стал больше, ведь находясь в самоизоляции люди чаще пользуются своими устройствами, и они чаще выходят из строя. Объем удаленной работы увеличился в разы — настолько сильно, что мой интернет-канал занят постоянно, и конца этому не видно. Скажу больше — моим заказчикам гораздо больше нравится удаленное обслуживание, ведь при этом не нужно куда-то ехать; то, что ждать по факту приходится дольше, чем при прямом обращении в офис, сейчас уже никого особо не пугает.

Количество физических обращений сокращено до возможного минимума — те, кто могут ждать окончания режима ЧП, ожидают этого события. В режиме физического доступа к носителю обрабатываются только те заказы, которые объективно не могут ждать.

Восстановление информации с карты памяти CFast 2.0

Профессиональные карты памяти CFast стандарта 2.0 появились на рынке относительно недавно (более-менее массово их стали использовать в профессиональных камерах, главным образом Canon, с 2016 года). Не смотря на это, они начали попадать в поле нашего зрения практически сразу после выпуска — но всегда с логическими проблемами (удаленные файлы или карта была отформатирована).

Но все течет, все изменяется — и вот в наших руках первая карта CFast 2.0, неисправная физически. Карта не отдает свой ID, не показывает емкость и вообще ведет себя довольно тихо. Увы, другого выхода, кроме как выпаивать NAND-микросхемы и вычитывать их дампы с последующей сборкой образа, у нас нет.

Тут следует сказать пару слов о том, что такое CFast 2.0. Для многих это просто карта памяти Compact Flash, пусть и с другим коннектором. Однако по факту это твердотельный диск (SSD) со стандартным SATA-соединением. Правда, разъем питания отличается от SATA, но это не мешает устройству по факту оставаться SSD в SATA-исполнении.

Что это значит для нас? Стандартная сборка дампов для этого накопителя невозможна, необходимо использовать алгоритмы, характерные для SSD.

Карта памяти CFast 2.0 Lexar 128 GB, поступившая к нам в работу

Пришедшая в работу карта CFast 2.0 Lexar 128 GB построена на довольно проблемном контроллере SM2246XT — сборка данных на этом контроллере имеет свои сложности, и довольно часто — фатальные для данных. Особенно, когда микросхемы памяти вычитаны с проблемами.

В нашем случае память прочиталась хорошо, а битовые ошибки были почти полностью скорректированы механизмами ЕСС. Мы получили «чистые» дампы в количестве 16 штук (в нашей карте 4 NAND-микросхемы, в каждой микросхеме по 4 банка) по 4 Гбайт каждый.

Карта CFast 2.0 Lexar 128 GB внутри
Коннектор карты CFast 2.0
NAND-микросхема из карты памяти CFast 2.0 Lexar 128 GB (BGA 152)

Для восстановления информации с этой карты пришлось комбинировать два инструмента. Дампы памяти считывались с использованием PC-3000 Flash через специализированный адаптер (BGA-152/132). В этом же комплексе производилась первоначальная обработка дампов (коррекция с использованием ЕСС и перечитывание нескорректированного). После этого дампы были перенесены в PC-3000 SSD, где проводились дальнейшие работы по восстановлению данных.

Безопасное извлечение USB-устройств. Почему и зачем?

Когда вышла из строя USB-флешка, как минимум в половине случаев это связано с тем, что она не была извлечена из компьютера корректно. Почему так происходит? Давайте разберемся.

USB и Plug-and-Play

Один из неоспоримых плюсов USB — легкость его монтирования в операционную систему. Принцип Plug-and-Play (вставил и работай) реализован давно, и для разных устройств, но все же наиболее полно он оказался открыт для USB-устройств. Подключая к компьютеру USB-флешку, смартфон, камеру, мышку или любое другое устройство с этим интерфейсом, мы получаем это устройство работающим практически незамедлительно после подключения. Поддержка устройств USB давно стала общемировым стандартом практически для всех операционных систем.

Современный внешний твердотельный накопитель на базе шины USB 3.1 (тип коннектора USB-C)

Не многие помнят, как это было в Windows 95, Windows 98 и других операционных системах того времени. Для того, чтобы подключить USB-флешку, требовалось сначала установить ее драйвер: или с дискеты, или с CD-ROM. Только после установки драйвера флешка начинала распознаваться в системе и с ней можно было работать. Соответственно, для того, чтобы перенести данные с одного компьютера на другой на этой самой флешке, требовалось нести с собой и диск с драйверами — в противном случае перенос был невозможен.

Скорости USB. Быстрее, выше, сильнее!

Надо ли говорить о том, что скорость работы первых устройств USB, ограниченная интерфейсом USB первого поколения, была весьма и весьма скромной?

Настоящий прорыв наступил с разработкой стандарта USB 2.0 в 2000 году и последовавшим за ним выходом в 2001 году Windows XP. Эта операционная система уже широко поддерживала огромный спектр USB-устройств, для их использования уже не требовалось установки каких-то особых драйверов (лишь в редких случаях, для устройств, для которых Windows XP не имел встроенного драйвера: некоторые сканеры, принтеры и т.п.; устройства хранения информации на базе интерфейса USB требовали установки особого драйвера крайне редко). Стандарт USB 2.0 обеспечивал неплохую скорость, и шина из Useless Serial Bus (бесполезная последовательная шина; так USB в шутку называли на заре его возникновения, поскольку устройств с его поддержкой было очень мало) революционными темпами превратилась в Universal Serial Bus (универсальная последовательная шина).

Однако скоростей USB 2.0 очень быстро перестало хватать, и разработчики стандарта предложили USB 3.0 — стандарт, скорости которого были максимально приближены к SATA. За короткое время были разработаны три стандарта: 3.0, 3.1 и 3.2; в итоге производители решили, что для третьего поколения USB стандартов как-то многовато, и объединили их все под крылом USB 3.2.

В настоящее время устройства с интерфейсом 3.2 позволяют, например, копировать огромные объемы информации за короткое время. При соблюдении некоторых условий реальная скорость работы внешнего твердотельного диска на шине USB 3.2 будет больше, чем скорость работы внутреннего жесткого диска на интерфейсе SATA.

Безопасное извлечение USB-устройства. Как это работает?

Ну а теперь можно поговорить и о том, о чем, собственно, написана эта статья. Что такое безопасное извлечение USB-устройства?

Впервые эта функция появилась в операционной системе Windows XP, и была реализована на уровне драйверов системы. Конкретно за безопасное извлечение устройств в Windows отвечает драйвер hotplug.dll.

Меню безопасного извлечения устройств в трее Windows 8.1

Для того, чтобы безопасно извлечь USB-устройство, нужно перевести указатель мышки в область системного трея, где выбрать соответствующий значок (см. скриншот выше). После этого нажать на него, подождать, пока система оповестит о возможности безопасного извлечения, и уже после этого извлекать устройство.

При активации безопасного извлечения устройства происходят следующие акции:

  1. Если в очереди записи/чтения на устройство имелись задачи, им ставится наивысший приоритет и производится их выполнение и финализация.
  2. Производится очистка системных областей буферной памяти, имеющих отношение к отключаемому устройству.
  3. Закрываются окна, имеющие отношение к отключаемому устройству (работает не во всех версиях операционных систем).
  4. Производится отмена любых операций внутренней активности устройства с их завершением.
  5. Отключается питание с порта USB, где будет извлекаться устройство, или этот порт переводится в режим ожидания.

Почему так важно безопасно извлекать устройство?

Давайте теперь представим, как будет работать USB-устройство, если мы не используем безопасное извлечение и выдергиваем это устройство, что называется, на живую.

Начнем с того, что устройство вполне может не содержать тех данных, которые вы на него отправили. Я уже показывал то, как работает отложенная запись Windows (ниже привожу это видео еще раз).

Другими словами, то, что вы отправили на устройство какие-то файлы, при небезопасном извлечении устройства вовсе не гарантирует того, что эти файлы будут на вашей флешке.

Это первая опасность.

Вторая опасность заключается в том, что при небезопасном извлечении устройства оно может выйти из строя. Небольшой перекос при извлечении, неравномерность движения в разъеме, слишком сильный нажим и т.п. — могут привести к тому, что произойдет электрическое повреждение устройства (а при небезопасном извлечении оно в разъеме находится под током). После этого устройство остается или ремонтировать, или (в случае невозможности ремонта) восстанавливать более радикальными методами, связанными с выпаиванием NAND-микросхем.

Третья опасность — возможный выход из строя микропрограммы устройства. Любой USB-накопитель, кроме микросхем, в которых хранятся данные (NAND-микросхемы), имеет контроллер. Этим контроллером и управляется устройство. Для функционирования устройства имеется микропрограмма, одной из важных частей которой является трянслятор.

Транслятор — это часть микропрограммы, которая соединяет физиескую адресацию пространства внутри флешки с логической адресацией пространства для операционной системы. Грубо говоря, физические адреса секторов переводятся в LBA, понятные операционной системе. При этом физически первый сектор для Windows во флешке может быть где-то в середине или в конце (совпадение физической и логической адресаций нынче скорее исключение, чем правило).

Так вот, во включенном состоянии флешка довольно часто совершает операции по оптимизации своего адресного пространства, производя соответствующие изменения в микропрограмме. Если в момент начала записи каких-то критических данных флешку выдернуть из компьютера, то эти данные записаны не будут. При следующем включении микропрограмма начнет искать эти данные, не сможет их найти и, как следствие, остановит работу. Устройство попадет в состояние «ошибка». Вывод из ошибки USB-устройств возможен далеко не всегда, для восстановления данных могут потребоваться довольно дорогостоящие процедуры.

Ну и еще одна опасность (четвертая) — это возможный выход из строя внешних жестких дисков, подключаемых через USB. Внешние жесткие диски получают питание через USB, и, соответственно, при внезапном обесточивании (то есть небезопасном извлечении) могут не успеть запарковать головки. При этом головки останутся на поверхности, упадут на нее, что неизбежно приведет к повреждению и головок, и поверхностей — а значит, к потере данных. Извлечение данных с USB-дисков с заклинившими на поверхности головками часто является весьма нетривиальной задачей.

Пятая опасность — выход из строя самого разъема USB. Это возможно по тем же причинам, которые характерны для второй опасности.

Как обычно. Пара практических советов в конце =)

Первый и самый главный совет — не забывайте о безопасном извлечении устройств. Даже если вы очень спешите — поверьте, лишние 20 — 30 секунд, потраченные на эту несложную операцию, могут уберечь вас от значительно больших затрат времени, к которым может привести потеря данных.

Второй совет. Извлекая устройство, старайтесь не перекашивать его, ведь после активации протокола безопасного извлечения часто USB-порт находится в режиме ожидания, и при перекосе может случиться так, что флешка потеряет контакт с портом и потом восстановит его; для системы это будет сигналом того, что в порт попало новое устройство, и система начнет процедуру его определения и использования. А вы при этом устройство уже извлекаете. Системные или аппаратные ошибки при этом весьма вероятны.

Заказчик сделал невозможным восстановление информации: Seagate в печальном состоянии на нашем столе

Радиальные царапины от неудачных попыток заказчика самостоятельно вывести задранные головки.

Очередной заказ на восстановление информации, увы, из категории «безнадежный». Диск прибыл во вскрытом состоянии и с весьма плачевным состоянием поверхностей. Головки сорвало в парковочной зоне (скорее всего, упор позиционера деформировался, что привело к удару слайдерами об ось шпинделя). В парковочной области образовался концентрический запил.

Такие типы запилов (тем более, в парковке) можно обойти. Это не просто, но возможно (модифицируется программа старта накопителя, который, вместо того, чтобы проводить полный цикл запуска с рекалибровкой, просто позиционирует головки в нужное нам место). Если бы проблема была только с запилом в парковочной зоне, за данные можно было бы еще повоевать.

Но, увы, заказчик решил самостоятельно демонтировать блок магнитных головок (для чего, сформулировать не смог). Работал без защиты от пыли и грязи, на обычном письменном столе. Как результат: отпечатки пальцев на поверхностях (что в целом не страшно и может быть убрано) и (что намного хуже) несколько радиальных царапин неправильной формы.

Радиальные царапины полностью исключают возможность использования донорского блока магнитных головок, так как при каждом вращении головки неизбежно попадут в область турбулентности, генерируемую царапиной, очень быстро перегреются и выйдут из строя. Кроме того, неизбежны микротравмы поверхности выбиваемой из этих царапин пылью.

Вердикт: восстановление данных невозможно.

Отпечатки пальцев на поверхности. Заказчик работал без соблюдения элементарной чистоты.

Резервное копирование мобильного телефона: суровая необходимость

Резервное копирование телефона — зачем это?

Мобильный телефон очень для многих сейчас заменяет практически все компьютерные устройства: это и фотокамера, и склад фотографий, и калькулятор, и мессенджер (причем не один), и средство доступа к банковским счетам, и средство платежа, и многое другое. Собственно, как телефон — средство связи — он сейчас используется намного меньше, чем все остальное. Просто проанализируйте: как часто вы делаете телефоном фотографии и как часто вы совершаете им же звонки. Разница будет разительной.

Именно поэтому резервное копирование вашего телефона превращается в задачу насущной необходимости, ведь очень часто пользователь не помнит ни логинов, ни паролей, которые когда-то давно ввел в своем телефоне для десятков приложений; не помнит пин-кодов, номеров телефонов наиболее важных контактов, и т.п. Потеря телефона или данных с него будет в этом случае равносильна потере связки ключей: от квартиры, от машины, от гаража… И если другой такой связки у вас нет, то придется вызывать специалистов для взлома дверей, а потом все это ремонтировать и восстанавливать.

Для того, чтобы подобных вещей не происходило, мобильный телефон время от времени требуется резервировать. Это не так сложно, как кажется. Мы рекомендуем производить резервное копирование вашего аппарата еженедельно — тем более, что для этого не потребуется много времени.

Разбиваем резервное копирование телефона на части

Давайте для начала решим, что будем резервировать. Это отнюдь не праздный вопрос — ведь от того, какой тип резервирования вы выберете, будет зависеть то, насколько быстро в случае проблем вы сможете вернуть назад функционал вашего мобильника.

Очевидно, что наиболее ценными данными являются данные приложений (явки, пароли, настройки), контакты, заметки и переписка. Вслед за ними — медиаданные (фотографии и видео). Последний уровень ценности — музыка и другой развлекательный контент. Все остальное принципиальной ценности обычно не имеет.

Таким образом, первое, что следует резервировать — это данные приложений, контакты, переписку. Затем — фотографии, видео. И, наконец, в последнюю очередь (если нужно) — музыку.

Лайфхак: резервируем фотографии в облако. Все, бесплатно и навсегда

Очевидно, что фотографии и видеофайлы — это самый «тяжелый» кусок данных телефона. И их резервирование будет занимать массу времени. Но есть красивое и легкое решение: Яднекс Диск для мобильного телефона.

Установив Яндекс Диск (это можно сделать из Google Play Market если у вас телефон под управлением Android или из App Store если у вас iPhone или iPad), достаточно войти в ваш Яндекс-аккаунт (если у вас такого нет, то его можно создать в процессе открытия приложения) и разрешить автозагрузку фотографий и видеофайлов в облако. Все. Процесс загрузки файлов в облако начнется незамедлительно, и через некоторое время (в зависимости от того, как много данных такого типа хранится в вашем телефоне на момент включения этой опции) все ваши фото и видео будут закачаны на Яндекс Диск. Все, что вам нужно, чтобы не потерять к ним доступ — помнить логин и пароль от этого сервиса.

Автозагрузка фото и видео на Яндекс Диск хороша еще и тем, что сервис делает это автоматически. Как только вы отсняли новый материал, и условия сети позволяют залить файлы в облако (возможно две опции — заливать только по Wi-Fi, или использовать любую сеть), они будут туда залиты. Потерять при этом фото довольно проблематично.

Кроме того, Яндекс обещает безлимитное хранение фото и видео в своем облаке. То есть вы можете не думать о том, сколько там еще места осталось в вашем облаке.

Не бойтесь подключать на один аккаунт Яндекс Диска несколько устройств. Фотографии будут закачиваться в облако со всех телефонов.

Резервирование Apple iPhone: так просто, как это может быть

Резервирование Apple iPhone — очень простая операция. Для того, чтобы полностью зарезервировать ваш телефон, вам понадобятся три вещи: сам телефон, компьютер и кабель для соединения телефона с компьютером.

Установите на компьютер программу Apple iTunes. Скачать ее можно с сайта apple.com. После этого подключите ваш iPhone (или iPad) через кабель к компьютеру. Телефон распознается автоматически; скорее всего, он потребует разрешить или запретить доверять компьютеру. Выберите «Доверять». После этого телефон будет открыт в программе iTunes. Подождите некоторое время, пока программа загрузит с телефона всю необходимую информацию. После этого в верхней левой части программы, около значка «Музыка», появится пиктограмма вашего телефона. Нажмите на нее, и откроется меню управления аппаратом. Выберите «Обзор»; тут и находятся волшебные кнопки управления резервированием. Выберите то, что вам удобнее (я обычно создаю локальную копию, это быстрее; не забудьте выбрать и галочку о шифровании локальной копии), а затем нажмите кнопку «Создать копию сейчас». Процесс резервирования займет некоторое время.

Вернуть телефон к состоянию, на которое сделана резервная копия, можно с помощью кнопки выше — «Восстановить iPhone».

Apple iTunes. Меню управления резервным копированием

Резервирование телефона под управлением Android: используем встроенные инструменты

Для того, чтобы создать резервную копию телефона под управлением Android, также не требуется никакой особой подготовки. В подавляющем большинстве случаев достаточно встроенных в операционную систему инструментов.

Инструменты резервного копирования в телефонах под управлением Android всегда расположены в блоках меню личных данных. Возможно два типа резервного копирования: в облако (на сервера Google) и на внешний носитель (в версиях Android начиная с 6.0; для асти телефонов может быть реализовано в более ранних версиях; в некоторых телефонах может быть не реализовано).

При копировании в облако восстановление телефона возможно только при его инициализации: когда вы введете установочные данные вашего Google-аккаунта, система просканирует его на предмет наличия резервных копий и, в случае их обнаружения, предложит восстановление из резерва. В отличие от этого, восстановление из локальной копии возможно в любое время.

Заключение. Пара советов и пара выводов

Как видите, резервирование мобильного телефона — задача вполне посильная даже для неискушенного в компьютерных делах пользователя. Выводы из этой статьи чрезвычайно просты: выполнение резервирования телефона целиком (а не отдельных его частей) наверняка гарантирует отсутствие головной боли при восстановлении доступа к вашим аккаунтам, переписке, контактам и т.п. в случае непредвиденной утери аппарата или данных с него; сама процедура резервного копирования телефона что в облако, что на локальный компьютер или карту памяти настолько удобны и просты, что пренебрегать этим нелогично и неправильно.

Ну и пара советов.

Совет 1. Как определить, когда требуется зарезервировать ваш телефон? Тут все просто. Когда объем критичных для вас данных после последнего резервирования уже таков, что потеря этих данных окажется невосполнимой. Можно поступить просто и настроить периодичные резервирования — скажем, один раз в неделю. В этом случае, если резервирование происходит в облако, вы даже о нем не узнаете.

Совет 2. Периодически проверять, производятся ли резервирования. Доверять автоматике полностью не стоит: если в системе случился какой-то сбой, то резервирования в автоматическом режиме могут и прекратиться.

Очередная китайская подделка: жесткий диск якобы на 500 Гбайт

Восстановление информации в Бишкеке | Data Recovery Bishkek | Восстановление данных в Кыргызстане | DataRecovery.KG

Сегодня к нам в лабораторию поступил довольно любопытный диск. Нет, вначале мы подумали, что это будет рядовой, заурядный заказ — Western Digital на 500 Гбайт, ничего вроде бы особенного, но… При подключении диска к ПАК РС-3000, после вывода диска на интерфейс, оказалось, что его емкость 320 Гбайт, а серийный номер диска при идентификации отличается от того, который написан на этикетке.

Тщательный осмотр показал: гермоблок накопителя относится совсем к другому семейству. Судя по этикетке, диск должен быть Tahoe и иметь явственно выраженные ребра по краям крышки гермозоны. По факту же накопитель оказался из семейства Rider с соответствующим строением крышки.

Собственно, те, кто подделал накопитель, особенно и не скрывали своей активности. Торцевая этикетка накопителя, дублирующая серийный номер, даже не была отделена от печатной основы — мы легко удалили ее, и нашему взору предстала оригинальная, исходная этикетка с серийным номером.

Вполне логично спросить: а для чего наклеивать на накопитель емкостью 320 Гбайт этикетку, на которой указано 500? Кто знает… Судя по истории этого компьютера, был он куплен давно, в те времена, когда такая разница в емкости была существенной по деньгам. Поэтому, думается, меркантильный интерес тут самый оправданный.

Восстановление информации в Бишкеке | Data Recovery Bishkek | Восстановление данных в Кыргызстане | DataRecovery.KG
Восстановление информации в Бишкеке | Data Recovery Bishkek | Восстановление данных в Кыргызстане | DataRecovery.KG
Восстановление информации в Бишкеке | Data Recovery Bishkek | Восстановление данных в Кыргызстане | DataRecovery.KG

Восстановить информацию с переломленной флешки

Задача. Восстановить данные с переломленной флешки.

Описание проблемы. Флешка имеет физическое повреждение: переломлена.

Результаты диагностики. Методом визуального осмотра определено, что флешка переломлена в области соединения USB-разъема.

Необходимые для восстановления информации процедуры.

  1. Распайка разъема USB на монтажной плате.
  2. Напайка проводников для соединения флешки и USB-разъема.
  3. Проверка соединения.
  4. Включение флешки в штатном режиме, копирование данных заказчика.

Результат.

Данные восстановлены полностью.

Особенности заказа.

Такие заказы обычно не являются сложными, так как возможность привести устройство к состоянию «чтение в штатном режиме» всегда лучше, чем восстановление информации в технологическом режиме.

SMR. Просто о сложном

Типичный представитель дисков с технологией SMR — Seagate Mobile HDD

Вместо предисловия

Когда-то давно (относительно, конечно) в индустрии производства накопителей на жестких магнитных дисках настал переломный момент: для того, чтобы увеличить емкость выпускаемых дисков, производители перешли от параллельной магнитной записи к записи перпендикулярной. Технология появилась 12 лет назад и ее единственной задачей было продлить век жесткого диска, сделать его конкурентноспособным за счет увеличения емкости и уменьшения цены. Надо сказать, что с задачей технология справилась на славу: емкость жестких дисков за эти годы выросла почти в 10 раз, а цена упала до смешного: за 1 Тбайт дискового пространства нынче просят меньше 50 долларов США.

Однако и технологии NAND, на которых строятся твердотельные диски, не стояли на месте. Появились ёмкие SSD (100 Тбайт) с очень высокой производительностью. Жесткие диски оказались позади аж по целым двум показателям: по емкости (потолок того, что можно сейчас купить на рынке — 18 Тбайт; производители обещают в скором времени диски емкостью 20 Тбайт, но по сравнению со 100 Тбайт это звучит, мягко говоря, не очень оптимистично) и по производительности (современный жесткий диск ограничен пропускной способностью интерфейса SATA или SAS, тогда как твердотельные диски последних поколений работают на скоростях шины PCI Express).

Единственный (и, надо сказать, пока еще определяющий выбор покупателя) плюс жестких дисков — их цена. Накопитель HDD на 1 Тбайт стоит в 3 — 5 раз дешевле твердотельного диска той же емкости, ну а повышение емкости SSD кратно одному Тбайту повышает его цену в некоторых случаях на порядок.

За то время, что развивалась технология перпендикулярной записи, ее возможности были практически исчерпаны, и перед производителем встала новая задача: как продолжать наращивать емкость? Для этого существует три пути: уменьшить толщину магнитных пластин и, как следствие, сделать возможным установить их в гермоблок жесткого диска больше (при этом по очевидным причинам страдает надежность); уменьшить величину записываемого участка (увеличить плотность на треке) и сделать возможным записать больше данных на трек (развиваются две технологии — MAMR и HAMR); изменить метод записи для более плотного расположения непосредственно треков. Вот об этом, последнем, пути увеличения емкости мы и поговорим.

Производители ведут разработки, естественно, во всех направлениях. Одним из революционных изобретений последних лет стала технология SMR — Shingled Magnetic Recording, черепичная магнитная запись. Про нее эта статья.

Что такое SMR

Черепичная запись — принцип организации записи треков так, чтобы они частично перекрывались. Соответственно, упаковка треков в этом случае максимальная — фактически они лежат так плотно, что головка чтения-записи уже не может работать с каким-то одним треком, ей приходится работать сразу с несколькими. Это заметно увеличивает скорость чтения и записи (пишем-то сразу несколько треков, как и читаем), но только в том случае, если запись или чтение производится последовательно. Если нам нужно работать с большим количеством мелких файлов, а тем более — начать перезапись данных внутри уже имеющихся (например, удалить один маленький файл и записать на его место другой), скорость записи и чтения может проваливаться всерьез и надолго — вплоть до значений, близких к единичным IOPS на несколько минут.

Схема упаковки треков при PMR-записи
Схема упаковки треков при SMR-записи

На рисунках выше мы показали разницу между PMR (причем не важно, параллельной или перпендикулярной) и SMR записью.

Как видим, писать-читать SMR-головки могут только порциями треков, причем довольно солидными, на ширину головки. Эти порции треков называются лентами (ленты могут быть и шире однократного прохода головки, но всегда кратны ему). Если старый добрый жесткий диск с PMR-записью оперировал треками, то новый, с записью SMR, оперирует уже лентами (хотя треками, естественно, оперировать он тоже умеет — но об этом ниже).

Как работает SMR-диск

Давайте представим, как это работает. Пользователь решил записать на SMR-диск какой-то файл. Система передала его на интерфейс, из которого он загрузился в буфер диска. Здесь уже логика жесткого диска определила, на какую ленту (или на какие ленты) этот файл положить. Если лента до этого была пустая — прекрасно, значит просто кладем туда данные, и дело в шляпе. А вот если там уже что-то лежало, то диску предстоит целый набор нетривиальных действий: считать то, что уже лежит на ленте; загрузить считанное в буфер; объединить с тем, что добавляется на ленту; положить весь кусок (старое и новое) туда, куда требуется. Если же укладываются не последовательно большие порции данных, то процесс может реально занимать немало времени — именно поэтому у SMR-дисков большой объем буферного ОЗУ. Хоть как-то процесс ускорить.

При последовательной записи картина обратная. На скриншоте ниже показана запись 2 Тбайт данных на SMR-диск с интерфейсом USB 3.0 производства Western Digital емкостью 4 Тбайт. Как видим, скорость весьма приличная, хотя и не максимальная. Если бы пересылались большие файлы (в нашем примере идет передача огромного количества фотографий), скорость записи была бы еще больше.

Копирование 2 ТБайт данных на внешний накопитель (SMR, 4 Tбайт, Western Digital) с интерфейсом USB 3.0

Возникает вопрос: а как тогда работает такой диск, если требуется многократная перезапись небольших файлов в разных местах диска, ведь получается, что диску предстоит перелопатить кучу лент и это, естественно, займет немало времени?

Да, это сложная задача, с которой программисты прошивок SMR-дисков постарались справиться двумя способами. Первый — это наличие у диска стандартных PMR-областей, а второй — введение в микропрограмму фоновых процессов реорганизации лент, сходных с обычной дефрагментацией (собственно, в микропрограмме она так и называется — фоновая дефрагментация).

PMR-области используются в тех случаях, когда буферное ОЗУ переполняется, и требуется быстро освободить его под новые очереди задач; также эти области используются для процессов фоновой дефрагментации.

Фоновая дефрагментация: корень всех зол или благо?

Теперь немного подробнее о самой дефрагментации. В те моменты, когда SMR-диск не имеет задач от операционной системы, микропрограмма автоматически запускает процессы реорганизации лент. Диск сканирует ленты, определяет, где данные следует перенести для оптимизации скорости чтения, и производит перенос: считывается вся лента (или несколько лент), выкладывается в буфер (и дублируется на другой части диска, в SMR- или PMR-области), затем данные переставляются в нужном порядке, лишнее удаляется, и лента (или ленты) кладется обратно. И так в цикле, пока не будет реорганизован весь массив данных.

Соответственно, чем больше на диске данных (и чем больше их было записано недавно и, соответственно, беспорядочно), тем больше диску требуется времени на фоновую дефрагментацию. Поскольку довольно часто сейчас SMR-диски используются во внешних накопителях, может возникнуть ситуация, когда ваш внешний диск начинает жутко «тормозить». Если при этом он не издает посторонних звуков, не был замечен в падениях или ударах и является относительно свежекупленным, мы рекомендуем подождать. Почти наверняка в нем идут фоновые процессы реорганизации информации, и через некоторое время диск завершит их и перейдет в нормальный режим работы. Если же вы будете пытаться в это время записать в него новые данные, то это просто приведет к значительной потере времени: данные вы, конечно, запишете. Но заметно дольше, чем могли бы.

Логика работы SMR-дисков. Двойной транслятор, шифрование и TRIM

Логика SMR-диска устроена по-другому, не как PMR-диск. Если в стандартных PMR-дисках имеется только одна система трансляции (физическая адресация сектор — трек — головка в логическую адресацию LBA), то у SMR-дисков систем трансляции две. Это классический транслятор «сектор — трек -головка в LBA» и новый транслятор «сектор — трек — головка в ленте», причем оба этих транслятора взаимосвязаны. Потеря любого из них приведет к полной потере данных (на этом, кстати, построены технологии «быстрого стирания» SMR-дисков — обнуляем один из трансляторов и все, данных нет). Восстановление будет возможно лишь в том случае, если получится восстановить утерянный транслятор. Это уже задача для компаний по восстановлению информации, на текущий момент — достаточно сложная и дорогостоящая.

Кроме того, не стоит забывать и про шифрование. Оно уже давно и прочно обосновалось в устройствах хранения информации — ну а в SMR-дисках его использование время от времени преподносит пользователям своеобразные и далеко не всегда приятные сюрпризы.

Третья особенность SMR-дисков — TRIM. Гораздо проще и быстрее не перестраивать структуру лент, если это не требуется, а менять транслятор: удалили данные — ленты помечаются как пустые, и, соответственно, при запросе данных возвращают заполненные нулями сектора. Это, с одной стороны, удобно. А с другой — даже простой логический заказ (удаленные данные) после отработки TRIM может оказаться уже сложным, с необходимостью поднимать транслятор диска и извлекать данные из помеченных как очищенные лент. Поэтому прежде чем удалять информацию с SMR-диска — убедитесь, что эти данные вам больше не нужны. Иначе можно серьезно пострадать.

И как все это использовать?

Вполне закономерный вопрос, между прочим. Если вы дочитали до этого места, то уже поняли: SMR-диски очевидно лучше использовать под определенные задачи — по крайней мере, пока технология не обкатается и не будут решены описанные выше сложности. Ведь не спроста производители вдруг начали делить диски по типу использования: Survellance (для систем видеонаблюдения, то есть — для непрерывной потоковой записи), NAS (для дисковых массивов, то есть — для постоянной случайной записи и чтения), Gaming (для игр, то есть — для быстрого чтения больших объемов данных и предчтения их в буфер), Computing (для обычных персональных компьютеров, то есть — для стандартного повседневного использования).

Выбирая диск, обращайте внимание на его назначение, и покупайте именно такой, который максимально отвечает планируемому его использованию. Микропрограммы и физическая организация дисков могут оказаться (и обычно оказываются) оптимизированы под целевое использование, и диск для систем видеонаблюдения может оказаться совсем не подходящим для использования в бытовом компьютере.

В целом можно констатировать, что на текущий момент наиболее оптимально использовать SMR-диски в задачах, где производится последовательная запись и стирание данных — особенно больших объемов. С такими задачами в силу механизмов функционирования эти диски будут справляться намного лучше и быстрее PMR-дисков. Например, диски в системах видеонаблюдения, архивирования данных (системы резервного копирования, которые записывают резервную копию в виде одного файла), внешние накопители для хранения информации, и т.п. SMR-диски нежелательно использовать под установку операционной системы, под работу ПО (особенно, связанную с многочисленными постоянными переносами данных — например, в системах видеомонтажа или верстки документов типографского качества) и пр. Для этих задач мы рекомендуем или SSD, или HDD в традиционном PMR-исполнении.

SSD. Время перемен. Часть 1. Преимущества и недостатки

Чуть больше 10 лет назад, когда первые твердотельные диски (SSD: solid state drive) появились в массовом использовании (сначала в 2007 году в нетбуке Asus EEE PC-701, а затем в 2008 году корейская компания Mtron Storage Technology выпускает SSD уже как отдельное устройство), им прочили великое будущее. И, как мы можем видеть сейчас, не ошиблись.

Преимущества SSD

Как устройства хранения информации (или, по классической схеме компьютера фон Неймана, запоминающее устройство (память)), твердотельные диски обладают перед жесткими дисками (HDD — hard disk drive) рядом преимуществ, а именно: высокая производительность, высокая устойчивость к физическим воздействиям, бесшумность, низкое энергопотребление и, соответственно, небольшой нагрев во время работы.

Высокая производительность.

Узкое место любого жесткого диска — система считывания и записи информации. Это головка чтения-записи. Увеличение производительности этой подсистемы возможно тремя способами: уменьшение времени поиска (или времени позиционирования на треке/секторе) программными и аппаратными средствами; увеличение скорости вращения шпиндельного двигателя для уменьшения времени поиска; установка нескольких независимых актуаторов для того, чтобы в процессе поиска данных участвовала не одна, а несколько головок. Первые два способа повышения производительности жесткого диска фактически исчерпаны, третий — пока находится на стадии разработок и тестирования; хотя он был анонсирован довольно давно, коммерческих моделей жестких дисков с двойным актуатором в продаже пока не появилось.

Таким образом, производительность жесткого диска ограничена пропускной способностью и производительностью головок чтения-записи, практически уже достигшей предела.

Твердотельные диски, в отличие от жестких, не имеют таких ограничений. Доступ к данным может быть организован (и организуется) в несколько независимых потоков. Фактически для SSD в SATA-исполнении верхней границей производительности является максимальная пропускная способность SATA-интерфейса (для SATA-3 это 6000 Mbit/s), для SSD, подключаемых на шину PCI Express — это максимальная пропускная способность PCIe (для наиболее распространенного на текущий момент PCIe x4 — 7,88 Гбайт/с; для наиболее быстрого на данный момент PCIe x16 — 63 Гбайт/с). Это совершенно фантастчиеские цифры для дисковой подсистемы.

Высокая устойчивость к физическим воздействиям

Жесткие диски — достаточно хрупкие устройства. Очень часто достаточно небольшого физического воздействия (легкий удар, падение с небольшой высоты и т.п.), чтобы жесткий диск перестал нормально функционировать. Более того — в результате такого воздействия можно полностью потерять доступ к данным, довольно часто — необратимо. Причина — выход из строя магнитных головок и/или повреждение поверхности. Продаваемые сейчас в массе внешние жесткие диски на базе 2.5-дюймовых НЖМД, хотя и позиционируются как противоударные, также не лишены этого недостатка.

Твердотельный диск, поскольку не имеет в своей конструкции движущихся частей, может выдерживать серьезные физические воздействия. Это послужило основанием для того, чтобы заменить в «черных ящиках» самолетов магнитную ленту или проволоку на SSD-диски. Таким образом, твердотельному диску не страшно то, что может полностью уничтожить жесткий диск. В целом, физическая устойчивость твердотельного диска практически полностью зависит от его корпуса: чем крепче корпус, тем более устойчив диск.

Бесшумность

В твердотельном накопителе, в отличие от жесткого диска, нет движущихся частей — следовательно, нечему издавать звуки. В отличие от традиционных жестких дисков, SSD работают абсолютно бесшумно.

Наиболее важным это свойство видится нам в ключе построения систем хранения данных (дисковых массивов и data-серверов). Если современный дисковый массив на базе SAS-накопителей производит много шума (шумят вентиляторы охлаждения и сами диски), то такой же массив на базе SSD будет намного тише, так как шум будет производить только система охлаждения.

Низкое энергопотребление

Жесткие диски для настольных ПК (даже произведенные в последние годы) имеют довольно высокие показатели энергопотребления: в зависимости от режима работы и того, куда они установлены, они могут потреблять до 25 — 30 Ватт электроэнергии. Диски для портативных компьютеров потребляют ощутимо меньше, но все же их среднее энергопотребление составляет 4 — 5 Ватт.

Твердотельные диски в этом плане намного выгоднее — их энергоэффективность минимум в 3 раза лучше, чем у НЖМД форм-фактора 2.5′, и примерно в 15 раз лучше, чем у 3,5′ дисков.

Низкие значения нагрева во время работы

Очевидно, что при низком энергопотреблении уменьшается и тепловыделение, а, следовательно, и нагрев. Это особенно важно в замкнутых системах (портативных компьютерах, планшетах, трансформерах и пр.). Нагрев — это бессмысленное рассеивание энергии, соответственно, чем он меньше, тем более энергоэффективным является устройство.

Недостатки SSD

К сожалению, устройств без недостатков не бывает. Не лишены недостатков и твердотельные диски. Это: относительно высокая цена и ограниченный ресурс.

Цена SSD

За то время, что твердотельные накопители эволюционировали, их стоимость, естественно, падала — и продолжает падать до сих пор. В некоторых случаях стоимость SSD уже всего лишь в 2 раза выше стоимостью HDD той же емкости. Например, SSD Crucial емкостью 480 Гбайт стоит в среднем 55 долларов США; жесткий диск аналогичной емкости стоит около 30 долларов США. SSD некоторых производителей (SmartBuy, KingSpec и пр.) могут стоить почти столько же, сколько и жесткий диск аналогичной емкости (однако они заметно проигрывают в производительности и надежности более известным брэндам).

Между тем не стоит сравнивать жесткие диски с твердотельными из нижнего ценового диапазона, так как в нем находятся не самые надежные и производительные устройства. Давайте сравним жесткие диски известного производителя (например, Western Digital) и твердотельные диски известного бренда (скажем, Samsung).

Стоимость жесткого диска WD Slim емкостью 500 Гбайт составляет 35 долларов США, диск для настольного компьютера WD Survellance емкостью 1 Тбайт стоит 42 доллара США. SSD Samsung аналогичной емкости будут стоить 120 и 200 долларов США соответственно — то есть примерно в 4 — 5 раз дороже. Согласитесь, это серьезный недостаток.

Ресурс твердотельного диска

Это, пожалуй, основной недостаток SSD, не позволяющий на текущий момент безоговорочно доверять этим устройствам.

Как известно, существует определенное значение циклов перезаписи, на которое рассчитан твердотельный диск. Для современной MLC-памяти это значение в среднем составляет 3000. В грубейшем приближении это означает, что мы можем полностью переписать SSD 3 тысячи раз, после чего его ресурс будет выработан. На практике все намного сложнее, и диск выходит из строя раньше окончания этого цикла. Проблема в том, что операционная система использует часть пространства диска весьма интенсивно — например, ядро ОС, файл подкачки, сброшенные на диск части буферной памяти и пр. Это приводит к критическому износу небольшой части поверхности. Пока у диска есть резервные сектора, это не страшно, однако после их окончания диск начинает, что называется, «сыпаться», и в итоге выходит из строя.

Не будем голословными, а обратимся к исследованиям серьезных организаций.

Компания Google совместно с университетом Торонто провели исследование используемых в их серверах SSD и пришли к выводу, что чем старше твердотельный диск, тем больше он содержит ошибок. Вывод вполне естественный: с возрастом изнашивается любое устройство, причем для части из них совсем не обязательно при этом работать (например, от долгого стояния приходят в негодность резиновые части автомобиля).

Гораздо более интересным в этом ключе выглядит исследование журнала Tech Report о том, насколько в действительности хватает ресурса SSD на прямую перезапись данных. Журналом были выбраны диски только известных брендов, и заголовок статьи, в которой опубликовано исследование, говорит сам за себя: They’re all dead (они все мертвы). Тестировались диски емкостью 250 Гбайт, только половина из которых выдержала запись 1000 терабайт данных; другая половина вышла из строя при записи от 700 до 900 Тбайт. Может показаться, что это огромные цифры, однако только в процессе работы со swap-файлом операционная система ежедневно переписывает гигабайты (а в случае с компьютерными играми — десятки и даже сотни гигабайт) данных — из этого и складывается износ.

Выводы из первой части

Какие следует сделать выводы из всего, сказанного выше?

Первый, и самый главный, вывод: технический прогресс идет вперед, и очень скоро стоимость твердотельного диска сравняется со стоимостью жесткого. Я помню времена примерно 10 лет назад, когда SSD OCZ на 256 Гбайт стоил 750 евро; сейчас даже Samsung такой же емкости стоит уже 60 — 70 долларов, то есть цена за 10 лет упала более чем в 10 раз. Это хорошая тенденция, настраивающая на то, что пора подумать о постоянном использовании твердотельных накопителей.

Второй вывод: не смотря на все минусы, твердотельные диски выгодно отличает высокая производительность, низкое энергопотребление и теплоотдача. Кроме того, эти диски устойчивы к физическим воздействиям.

Ну и вывод третий. Во второй части этой статьи я расскажу вам, как организовать использование твердотельного диска в вашем компьютере и обезопасить себя от потенциальной потери данных.



Мы принимаем к оплате | We accept payments


Мы стажировались и работали в странах | We worked or practiced in following countries