Очередное изобретение злоумышленников, желающих получить доступ к вашему компьютеру — рассылка фишинговых писем с предложением отследить некую посылку.
Люди часто пользуются службами доставки или почтой, поэтому для многих такое предложение не покажется подозрительным. Не ожидая ничего плохого, они пройдут по имеющейся в письме ссылке, в результате чего загрузят на свой компьютер вредоносное ПО. Чем это чревато?
Наиболее распространенная возможная проблема — включение вашего компьютера в ботсеть для осуществления распределенных вычислений. Следующая по степени распространенности — троянская программа для кражи персональных данных (включая данные банковских карт или реквизиты интернет-банкинга). Наконец, вам могут просто зашифровать файлы с последующим требованием выкупа за их расшифровку.
Поэтому, получая любое электронное письмо с неизвестного вам адреса, тем более — содержащее внутреннюю ссылку — не нажимайте на ссылку сразу, проверьте ссылку, обращались ли вы в службу, которая ссылается за ссылкой, ранее, взвесьте все «за» и «против», и только после этого принимайте решение — посещать эту ссылку или удалить письмо.
Нам часто поступают заказы на восстановление информации из чатов мессенджера WhatsApp. В части случаев, к сожалению, нам приходится отказывать в проведении работ в силу их бесперспективности. В этой короткой заметке я собрал наиболее часто задаваемые вопросы о восстановлении информации из сообщений, отправляемых через WhatsApp.
Вопрос: Телефон был сброшен на заводские настройки, требуется восстановить чаты WhatsApp.
Ответ: Если в телефоне не была установлена карта памяти, или не делалась резервная копия в облако, восстановление данных с телефона невозможно. При сбросе на заводские настройки производится полная очистка внутренней памяти телефона, после чего в ней уже нет никаких данных, которые были до сброса. WhatsApp в случае наличия карты памяти может держать базы сообщений на ней, и если телефон даже был сброшен, в приложение можно загрузить сообщения из сохраненных баз. Сброс телефона не затрагивает карту памяти; также сброс телефона не затрагивает сервисы облачного хранения данных.
Вопрос: Я удалил чат некоторое время назад, теперь мне нужно его восстановить.
Ответ: Восстановление чатов возможно только из резервной копии или файлов баз сообщений, которые хранятся в папке Whatsapp вашего устройства. Файлы баз сообщений не хранятся на работающем постоянно телефонее более 2 недель. Соответственно, восстановить удаленный чат можно только в том случае, если у вас имеется резервная копия на нужную дату, или файл баз сообщений на нужную дату.
Вопрос: Удаленные чаты удалось восстановить из файла баз сообщений, но в нем нет фотографий, которые мне присылали в этот чат.
Ответ: Все медиа-файлы, которые присылают ваши корреспонденты через WhatsApp, хранятся в открытом виде (не шифруются) на вашем устройстве. В случае удаления чата медиа-файлы удаляются, а в ежедневных базах сообщений они не хранятся, там хранится только текстовая информация. Таким образом, если медиа-файлы были удалены, их восстановление уже либо невозможно, либо для него требуется сложная процедура сохранения телефона в файл-образ с последующим его анализом.
Вопрос: Как лучше всего делать резервное копирование чатов WhatsApp?
Ответ: Лучше всего, без сомнений, иметь полную копию (включающую медиа-файлы). Если медиа-файлы не будут включены в резервную копию, то при удалении чатов после резервирования вы рискуете их потерять.
Вопрос: Можно ли восстановить удаленные чаты из отчета по информации аккаунта, который имеется у меня в настройках?
Служебная зона накопителя — то его пространство, которое используется для его собственных, служебных, нужд. Это: обеспечение работы накопителя (запуск, функционирование, трансляция физических адресов в логические и т.п.), ведение различных системных журналов (SMART, общее время работы, дефекты и пр.) и так далее. Функционирование накопителя без служебной зоны невозможно.
Организация служебной зоны может быть разной, но в подавляющем большинстве случаев служебная зона — это область дискового пространства, куда нет доступа в штатном режиме. В этой области находятся части микропрограммы и других фрагментов служебной зоны, которые называют модулями.
Неисправности служебной зоны, как правило, не приводят к полному выходу из строя накопителя, они проявляются или в неправильной его идентификации, или в сильной заторможенности его работы, или в невозможности получить доступ к данным, или в блокировании работы микропрограммы. Физически диск при этом остается исправным.
Стоимость работ по возвращению служебной зоне работоспособности и обеспечению доступа к данным варьирует от 1000 до 5000 сом, но в некоторых особо сложных случаях может достигать 14000 сом. Как вы уже поняли, стоимость будет напрямую зависеть от сложности и от того, какие ресурсы для успешного завершения работ должны быть задействованы.
1. Легкие случаи
Легкие случаи — те, для восстановления которых не требуется подбора совместимой версии микропрограммы. К ним относятся те неисправности служебной зоны, которые либо корректируются самим накопителем при подаче соответствующей команды (например: переполнение логов подсистемы SMART), либо могут быть скорректированы простой перезаписью поврежденного модуля служебной зоны от аналогичного диска, либо — отключением этого модуля в таблице модулей накопителя.
Стоимость работ по легким случаям составляет 1000 сомов, время выполнения работ — не более получаса. В стоимость таких работ включаются:
Амортизация специализированного оборудования;
Расходные материалы;
Заложенная прибыль.
2. Случаи средней тяжести
При средней степени тяжести повреждения служебной информации накопитель уже не может сам исправить имеющиеся проблемы соответствующей командой, а простой перезаписи неисправных частей микропрограммы оказывается недостаточно для организации доступа к пользовательским данным. К таким повреждениям относятся: повреждения системы трансляции; установка максимального уровня парольной защиты при забытом пароле; активированное аппаратное шифрование накопителя (SED — Self Encrypted Drive — самошифрующийся диск) и пр. Для восстановления доступа к пользовательским данным потребуется провести несколько манипуляций, включающих в себя: организацию доступа к служебной зоне; внесение в служебную зону необходимых исправлений; проверку корректности изменений; запуск накопителя и копирование данных.
Стоимость работ по таким случаям составляет от 2000 до 3500 сомов, время выполнения работ составляет от одного часа. В стоимость таких работ включаются:
Амортизация специализированного оборудования;
Расходные материалы;
Заложенная прибыль.
3. Тяжелые случаи
К этой группе относятся неисправности служебной зоны, которые еще можно исправить, используя только диск-пациент, но исправление требует глубокого знания функционирования накопителя, организации его служебной информации и шестнадцатеричной системы счисления.
Например: частичное разрушение модулей дефект-листов во всех копиях служебной зоны; частичное разрушение оверлеев микропрограммы во всех копиях служебной зоны; разрушение или повреждение модулей адаптивной информации; и пр.
Для приведения к рабочему состоянию в таких случаях обычно требуется максимально полное вычитывание данных из служебной зоны, а затем восстановление утерянных частей модулей с помощью шестнадцатеричного редактора. Эта работа стоит 5000 сом и может занимать несколько дней.
В стоимость таких работ включаются:
Амортизация специализированного оборудования;
Расходные материалы;
Заложенная прибыль.
4. Случаи, требующие использования исправного диска
Бывают ситуации, когда исправление проблем в служебной зоне накопителя невозможно. Например, разрушения служебной зоны так велики, что накопитель теряет возможность корректной записи. В таких случаях потребуется подготовка диска-клона неисправного накопителя и запуск неисправного диска с использованием диска-клона.
Для этого из служебной зоны неисправного диска вычитывается максимальное количество информации, производятся (если необходимо) манипуляции с модулями (восстановление, ремонт и т.п.), а затем нужные для функционирования диска модули записываются в исправный носитель. После этого исправный диск, если все сделано верно, запускается со всеми параметрами (включая систему трансляции) как у неисправного диска, и нам достаточно перенести проинициализированную таким образом плату электроники с подготовленного носителя на неисправный.
Стоимость этой услуги, по очевидным причинам (необходимость использования исправного диска в качестве запчастей) является достаточно высокой, и может достигать 14000 сомов.
В стоимость таких работ включаются:
Амортизация специализированного оборудования;
Расходные материалы;
Исправный диск;
Заложенная прибыль.
При этом имеется риск, что исправный диск после всех манипуляций уже будет невозможно вернуть в исходное состояние, то есть диск физически будет исправен, но не будет нормально функционировать. Это связано с тем, что в случае записи в накопитель чужих (от неисправного диска) адаптивных параметров у части накопителей запись по этим параметрам окажется невозможной. Это нужно учитывать при планировании расходов, связанных с восстановлением.
Задача. Восстановить данные из профессионального диктофона ZOOM Handy Recorder H6.
Описание проблемы. Карта памяти из диктофона была отформатирована в фотоаппарате, данные не видны. При восстановлении данных свободно распространяемым через интернет ПО аудиозаписи повреждены.
Результаты диагностики. В результате форматирования утеряна информация о фрагментации аудиофайлов.
Необходимые для восстановления информации процедуры.
Посекторное копирование карты памяти в образ.
Анализ образа, отделение аудиопотока от остальных данных.
Анализ аудиопотока, реконструкция метода записи диктофона.
Подготовка скрипта для сборки аудиопотока.
Сборка аудиопотока, контроль результата.
Результат.
Данные восстановлены полностью.
Особенности заказа.
Диктофон ZOOM Handy Recorder H6 записывает многоканальный звук сразу с нескольких микрофонов и компонует аудиозапись таким образом, чтобы максимально увеличить производительность при записи. При этом особенное внимание уделяется качеству звука — звук записывается в формате wav с высоким битрейтом. Файлы при этом получаются достаточно большими. Для оптимизации записи диктофон пишет эти файлы на носитель фрагментированно.
После форматирования флеш-карты из диктофона информация о фрагментировании теряется, и аудиофайл перестает нормально работать. Восстановленный классическими свободно распространяемыми через Сеть приложениями, такой файл проигрывается, но запись представляет собой смесь звуков.
Размер фрагментов зависит от количества подключенных микрофонов и интенсивности записи. Не имея информации о том, каким образом диктофон записывал конкретный аудиофайл, восстановить правильный порядок и величину блоков невозможно.
В каждой папке проекта (аудиозаписи) диктофона имеется файл-описатель формата hprj. В этом файле содержится вся необходимая информация для сборки аудиофайла, пригодного для проигрывания: величина блоков записи, их расположение и порядок. Поскольку данный формат файлов нигде не описан, нам пришлось самостоятельно разбираться с ним и подготовить на его основе скрипт для нашего сборщика mov-файлов.
Процедура восстановления информации с диктофона ZOOM Handy Recorder H6 заняла в нашей лаборатории 2 часа.
Ситуации, когда приходится объяснять, отчего стоимость тех или иных услуг именно такая, а не какая-то другая, случаются не только в IT, но и в целом во всей сфере оказания услуг. Я уже писал о том, как и почему стоимость той или иной услуги по восстановлению данных составляет именно ту сумму, которую вам озвучили, однако вопросов не становится меньше, поэтому было принято решение разложить прайс на пять частей (логические проблемы, проблемы в служебной области накопителя, замена блока магнитных головок, прочие физические проблемы, дисковые массивы) и по каждой из этих частей написать подробную статью. Перед вами первая часть из запланированных пяти — о том, из чего складывается стоимость логического восстановления данных.
Что такое логические проблемы? Под этим общим названием принято понимать те случаи, когда накопитель физически исправен, но по каким-то причинам пользователь не может получить доступ к своим данным. Замечу сразу, что при некоторых проблемах со служебной зоной поведение накопителя может быть таким же: накопитель исправен, но доступа к данным нет. Какая именно проблема приключилась с конкретным диском, можно выяснить в ходе диагностики, которая у нас бесплатна.
Логические проблемы условно можно разделить на следующие типы:
Полная или частичная перезапись данных (переустановка операционной системы без предварительного резервирования данных; удаление информации с последующей записью новых данных; и т.п.).
Форматирование раздела.
Удаление информации.
Шифрование данных (как инициированное вирусом-шифровальщиком, так и самим пользователем).
Ошибки операционной системы (запись в сектора модифицированных или неверных данных).
Проблемы интерфейса (криво установленный кабель, в результате чего происходит искажение сигнала и запись неверных данных; помехи от сильного источника электромагнитного поля, приводящие к искажению сигнала; и т.п.).
Преднамеренное или непреднамеренное изменение структуры данных (например, замещение некоторых секций файла другими секциями того же или другого файла).
Полная или частичная перезапись данных
Перезапись данных всегда приводит к невозможности 100%-ного восстановления информации. Наиболее распространена переустановка операционной системы без предварительного резервирования данных.
Стоимость работ по извлечению информации после ее перезаписи варьирует в широких пределах. В нашей лаборатории вы можете получить эту услугу по цене от 1000 до 5000 сомов в зависимости от сложности. В лабораториях крупнейших мировых центров по восстановлению информации (с некоторыми из них мы имеем партнерские отношения, поэтому в некоторых случаях мы можем помочь через наших партнеров) стоимость таких работ может составлять до нескольких сотен тысяч долларов. Такая цена возможна в случаях, когда производится восстановление данных по остаточной намагниченности с использованием туннельного электронного микроскопа. Это кропотливая, длительная и непростая процедура, требующая дорогостоящего оборудования (туннельного микроскопа) и программного обеспечения (сшивающего RAW-споты слоев остаточной намагниченности в треки и декодирующего их в бинарном виде).
Стоимость услуги по восстановлению данных после перезаписи в нашей лаборатории складывается из следующих компонент:
Создание посекторного клона накопителя, с которого производится восстановление данных (все операции мы производим с клоном для того, чтобы исключить любой риск повреждения исходных данных).
Сканирование текущей файловой системы для определения карты секторов, которые используются в ней.
Создание карты секторов, не использующихся в текущей файловой системе.
Поиск валидных данных в обеих созданных картах, выливка данных на диск-приемник.
Анализ полученного результата, удаление поврежденных файлов.
Амортизация ПО, используемого для восстановления информации.
Амортизация используемого для подключения диска в режиме «только чтение» оборудования.
Накладные расходы (электроэнергия, аренда и т.п.).
Заложенная прибыль.
Работа может проводиться не в один проход. Финальная стоимость зависит от того, какой объем данных нам придется обрабатывать — чем больше объем, тем больше на работы требуется времени, тем большее время будет занято специальное оборудование и тем выше будет окончательная стоимость работ.
Форматирование раздела
Также, как и предыдущая проблема, является одной из наиболее широко распространенных. Форматирование раздела может происходить как случайно, так и намеренно. Результат: раздел имеется, данных в нем нет.
Стоимость восстановления данных из разделов после форматирования варьирует от 1000 до 10000 сомов. Складывается она из следующих моментов:
Создание посекторного клона накопителя, с которого производится восстановление данных (все операции мы производим с клоном для того, чтобы исключить любой риск повреждения исходных данных).
Сканирование файловой системы и реконструкция ее структуры до форматирования.
Выливка данных на внешний приемник.
Анализ полученного результата, уточняющее сканирование накопителя, если результат неудовлетворительный.
Амортизация ПО, используемого для восстановления информации.
Амортизация используемого для подключения диска в режиме «только чтение» оборудования.
Накладные расходы (электроэнергия, аренда и т.п.).
Заложенная прибыль.
В случае с форматированием раздела цена работ зависит от объема накопителя (чем он больше, тем больше требуется времени на производство работ и тем выше, соответственно, их стоимость) и от типа раздела. Дешевле всего восстановить данные из форматированных разделов NTFS, так как структурные особенности разделов этого типа позволяют полностью реконструировать исходную файловую систему с минимальными затратами времени. Наиболее дорогими для восстановления информации после форматирования являются разделы FAT и ZFS, так как их структурные особенности требуют больших объемов ручной работы (в первом случае как результат фрагментации, во втором — сжатия информации).
Удаление информации
Довольно часто бывает так, что пользователь или третье лицо случайно удаляет нужный файл или папку. Восстановление данных в этом случае достаточно непредсказуемо — если данные удалены с жесткого диска, и после удаления работа с ним не велась, то шансы на восстановление достаточно велики. Если данные удалены с телефона или SSD, шансы на восстановление обратно пропорциональны времени использования устройства после удаления файла.
Стоимость работ по восстановлению удаленных данных складывается из следующих моментов:
Безопасное подключение и подготовка носителя к извлечению данных.
Сканирование файловой системы и поиск удаленных файлов.
Копирование найденных данных на внешний приемник.
Анализ полученного результата, уточняющее сканирование накопителя, если результат неудовлетворительный.
Амортизация ПО, используемого для восстановления удаленных файлов.
Амортизация оборудования, используемого для подключения накопителя в режиме «только чтение».
Накладные расходы (электроэнергия, аренда и т.п.).
Заложенная прибыль.
Средний ценник на восстановление удаленных файлов с жесткого диска в настоящее время составляет 1000 сом, с телефона 3000 сом.
Шифрование данных
Данные могут быть зашифрованы как вирусом-шифровальщиком, так и самим пользователем (BitLocker, FileVault, EFS и пр.). В первом случае вирус сам сообщает о том, что данные зашифрованы, и начинает вымогать вознаграждение за расшифровку. Во втором случае проблемы обычно возникают в трех случаях:
Возникновение на накопителе дефектных секторов, приводящих к проблемам с штатной расшифровкой.
Переустановка системы без учета того, что данные были зашифрованы (при этом теряются ключи шифрования).
Утеря информации о ключах или паролях (забыли, потеряли листок где это записано, и пр.).
Стоимость услуги восстановления данных в случае с их зашифровкой варьирует от 7000 до 10000 сом в случае если это шифрованная файловая система (BitLocker, FileVault, TrueCrypt и пр.); в случае, если данные зашифрованы вирусом, стоимость расшифровки может составлять до 25000 сом. Из чего складывается данная услуга:
Создание посекторного клона накопителя, с которого производится восстановление данных (все операции мы производим с клоном для того, чтобы исключить любой риск повреждения исходных данных).
Сканирование накопителя, поиск информации для восстановления (ключи шифрования, метаданные и пр.).
Применение ключей шифрования, потоковая расшифровка данных на внешний диск-приемник.
Анализ полученного результата, уточняющее сканирование накопителя, если результат неудовлетворительный.
Амортизация ПО, используемого для восстановления информации.
Поиск алгоритмов шифрования в ручном режиме, если они не были обнаружены в автоматическом.
Амортизация используемого для подключения диска в режиме «только чтение» оборудования.
Накладные расходы (электроэнергия, аренда и т.п.).
Заложенная прибыль.
Высокая стоимость расшифровки данных в нестандартных случаях объясняется большим количеством ручной работы. Если дело касается стандартных случаев шифрования (BitLocker, FileVault), стоимость ниже, и зависит главным образом от того, насколько долго будет занят специализированный ПАК для извлечения данных.
Ошибки операционной системы
В некоторых случаях потеря данных может быть следствием некорректной работы операционной системы. Такие случаи достаточно редки, однако они все же встречаются. Наиболее распространенным типом ошибки при этом является работа штатной программы проверки диска checkdisk в ОС Windows.
Работа этой программы направлена на то, чтобы выявить и исправить ошибки файловой системы жесткого диска. При этом, если выявляются ошибки, связанные с дефектными секторами (например, повреждена часть записей в MFT), то данные, которые относятся к этим ошибкам, программа переносит (именно переносит, а не копирует) в особые папки, которые сама создает на диске. Чем это чревато? Во-первых, при больших объемах таких переносов может возникать перезапись данных. Во-вторых, программа не гарантирует, что будет произведен перенос всего файла.
Возможны и другие ошибки работы ОС, приводящие к утере доступа к данным — например, запись неверных данных в заголовок раздела или в файловые таблицы.
Работа с ошибками операционной системы тарифицируется также, как работа с удаленными данными, и составляет обычно 1000 сом. Что сюда входит:
Безопасное подключение и подготовка носителя к извлечению данных.
Сканирование файловой системы и поиск ошибок ОС.
Копирование найденных данных на внешний приемник.
Анализ полученного результата, уточняющее сканирование, если результат неудовлетворительный.
Амортизация ПО, используемого для восстановления удаленных файлов.
Амортизация оборудования, используемого для подключения накопителя в режиме «только чтение».
Накладные расходы (электроэнергия, аренда и т.п.).
Заложенная прибыль.
Проблемы интерфейса
Встречаются крайне редко, являются наиболее сложно диагностируемыми логическими проблемами с наиболее сложными методами восстановления. Стоимость работ с такими заказами составляет от 5000 сом за 1 Тбайт емкости диска.
В чем проявляются такие неисправности? При неправильной установке коннектора data-кабеля (будь то SATA, SAS/SCSI или USB) нестабильный контакт приводит к искажениям записи информации, имеющим определенный повторяемый характер. Например, одна из линий данных может вместо байтов 00h записывать FFh. При этом файл будет записан на устройство, но при его работе будут возникать ошибки: он либо не будет запускаться вообще, либо после запуска его содержимое будет искажено или повреждено.
Для восстановления поврежденных таким образом данных потребуется сделать следующее:
Обнаружить все сектора, в которых имеются поврежденные или модифицированные данные;
Настроить скрипт-машину таким образом, чтобы произвести пакетное потоковое исправление ошибок;
Проконтролировать результат.
Таким образом, в стоимость работ указанного типа заложены следующие моменты:
Безопасное подключение и подготовка носителя к извлечению данных.
Создание посекторной копии накопителя.
Определение алгоритма повреждения данных.
Настройка скрипт-машины на потоковое пакетное исправление повреждений.
Анализ полученного результата, уточняющее сканирование, если результат неудовлетворительный.
Амортизация ПО, используемого для восстановления удаленных файлов.
Амортизация оборудования, используемого для подключения накопителя в режиме «только чтение».
Накладные расходы (электроэнергия, аренда и т.п.).
Заложенная прибыль.
Преднамеренное или непреднамеренное изменение структуры данных
Встречается еще реже, чем предыдущий тип логических неисправностей. Суть проблемы заключается в том, что в определенном файле часть данных замещается другими, не имеющими отношения к этому файлу. Как правило, это происходит при сбоях операций переноса или копирования. Также, как правило, замещенные данные на целевом носителе имеются, но являются «потерянными».
Работы в этом случае заключаются в поиске утерянных фрагментов данных и «посадке» их на место. Задача эта весьма нетривиальна, так как требует глубокого знания форматов файлов, с которыми производятся работы, а также, обычно, кропотливого поиска утерянных фрагментов данных в ручном режиме. Проблема в том, что обычно RAW-данные в фрагментированном виде не имеют уникальных структур, позволяющих их обнаруживать автоматически (таких, как заголовки), поэтому их поиск возможен только вручную.
Стоимость работ по восстановлению работоспособности единичного файла составляет от 500 до 10 000 сом и зависит от его типа, размера и характера повреждений. В эти работы закладываются:
Безопасное подключение и подготовка носителя к извлечению данных.
Определение алгоритма повреждения данных.
Поиск фрагментов утерянных данных.
Анализ полученного результата, уточняющее сканирование, если результат неудовлетворительный.
Амортизация ПО, используемого для восстановления удаленных файлов.
Амортизация оборудования, используемого для подключения накопителя в режиме «только чтение».
Накладные расходы (электроэнергия, аренда и т.п.).
Заложенная прибыль.
Заключение
Как видите, стоимость восстановления информации даже в относительно «легких» случаях логических проблем складывается из массы моментов, однако основными являются оборудование и ПО. И то, и другое имеет приличную стоимость; например, комплект оборудования компании ACE Lab для восстановления данных с жестких дисков (ПАК РС-3000) имеет стоимость 1500 долларов США в минимальной комплектации. Как профессиональный сервис, мы используем десятки наименований различного оборудования, имеющего аналогичную стоимость.
В следующей части этой статьи мы расскажем о том, из чего складывается стоимость работ при восстановлении информации с накопителей с проблемами в служебной зоне.
Как только Президент РФ Владимир Путин объявил о том, что в связи с коронавирусом из бюджета России будут совершены выплаты на несовершеннолетних детей — единовременно по 10 000 рублей на ребенка — тут же активизировались разного рода цифровые мошенники. На почтовые ящики пользователей начали приходить письма идентичного или очень похожего содержания: для получения компенсации требуется пройти некую процедуру регистрации на сайте.
На скриншотах выше только один такой сайт; их было 5 разных за три дня активной «бомбежки» нашего специального почтового ящика для спама (некоторое время назад мы зарегистрировали специальный электронный ящик на mail.ru, который постоянно «засвечивается» в Интернете, и на котороый по этой причине приходят тонны спама, фишинга и пр.; это нужно нам для того, чтобы отслеживать тренды, в которых в настоящий момент работает мысль злоумышленников).
Переход на эти сайты чреват серьезными проблемами (именно поэтому название сайта я заблюрил). Проверка на виртуальной машине показала, что два из пяти сайтов загружают на ваш компьютер вредоносное ПО (вирус), начинающее зашифровывать ваши данные с целью в дальнейшем вымогать средства за их расшифровку. На трех из пяти сайтов вас попросят пройти регистрацию, одним из пунктов которой будет указание реквизитов вашей банковской карты (кардерство — воровство данных банковских карт для последующего снятия с них денег).
Не ведитесь на подобное завлекалово, помните, что получить федеральные выплаты можно только через сайт Госуслуги.
*Настоящее сообщение адресовано прежде всего жителям России, Кыргызстана и Казахстана, среди которых достаточно много людей с двойным (Россия — страна рождения) гражданством, на коорых и направлена эта атака.
Твердотельные диски (SSD) прочно вошли в нашу жизнь, их можно встретить практически в любых вычислительных устройствах: игровых приставках, персональных компьютерах (особенно широкое распространение SSD получили в ноутбуках), смартфонах, переносных дисках и т.п. Однако, не смотря на это, пользователи зачастую не придают значения тому, что вместо жесткого диска у них стоит твердотельный, не учитывают этого при эксплуатации и благодаря этому теряют как в производительности, так и в сроке жизни устройства.
Не секрет, что твердотельный диск — устройство, для которого производителем установлен конечный ресурс (количество циклов записи в ячейку памяти). Для разных устройств это значение различно и зависит от типа и производителя NAND-микросхем, установленных на SSD. Скажем лишь, что оно относительно невелико — для некоторых типов современной QLC-памяти оно составляет 3000 циклов на ячейку памяти, а иногда даже и меньше. Согласитесь, это очень немного, особенно в случае активного использования диска. Поэтому производители идут на разного рода ухищрения для того, чтобы увеличить этот ресурс: устанавливают в накопителе огромные объемы запасных ячеек памяти, хитрые алгоритмы их заполнения и использования, активно используют функции TRIM, переноса и оптимизации данных, и т.п. Но как бы они не старались, то, как используется твердотельный диск, в конечном счете и определяет его срок службы и производительность.
Ниже я дам 10 советов о том, как продлить срок службы вашего SSD, используя его на возможном максимуме производительности.
1. Не заполняйте SSD полностью
Для того, чтобы твердотельный накопитель мог отрабатывать свои алгоритмы увеличения срока службы, не рекомендуется заполнять SSD более чем на 75%; идеальным же является соотношение заполненного места к незаполненному 50/50. Почему так? Твердотельный диск только номинально (для операционной системы) имеет традиционный размер сектора, кратный 512 байт. Физически размер ячеек памяти сильно отличается от этой величины, и не только кратностью, но и наличием дополнительных областей, предназначенных для служебной информации и данных для коррекции битовых ошибок. По этой причине ячейки памяти SSD часто заполнены не полностью, и накопитель осуществляет внутренний перенос данных для освобождения частично заполненных ячеек для увеличения их ресурса.
2. Дефрагментация больше не нужна
Дефрагментация данных была придумана для того, чтобы уменьшить время доступа к файлу на жестких дисках. Для того, чтобы прочитать файл, записанный в разных местах диска фрагментами, в случае с жестким диском требуется несколько последовательных операций позиционирования головок (поиск информации о фрагментах файла в файловых таблицах; обращение к первому фрагменту; обращение ко второму фрагменту; и так до конца файла). При этом чем больше фрагментов, из которых состоит файл, тем больше будет время его чтения. В случае с твердотельными дисками операций позиционирования нет, диск с одинаковой скоростью читает данные из любого места диска, поэтому дефрагментация утрачивает смысл. Кроме того, все SSD самостоятельно производят дефрагментацию на физическом уровне.
3. Выбирайте правильный интерфейс
Твердотельный диск — устройство значительно более производительное, чем традиционный жесткий диск. Однако его производительность может раскрыться только тогда, когда он подключен на производительный интерфейс. Часто бывает так, что пользователь устанавливает быстрый SATA3 твердотельный диск на медленный SATA1 или SATA2 интерфейс и не видит особой разницы между тем, как работал его жесткий диск, и как работает его новый SSD. Поэтому, прежде, чем ставить себе SSD, убедитесь, что производительность интерфейса соответствует производительности твердотельного диска.
4. Не стоит использовать SSD как подключаемое хранилище данных
Как бы это ни звучало абсурдно, но SSD в его нынешнем исполнении — не то устройство, которому следует доверять хранение информации в классическом смысле. Что это значит? Довольно часто пользователи производят резервное копирование на накопитель, подключая его к компьютеру только на время резервного копирования; все остальное время накопитель отключен от ПК и находится где-то на хранении. При использовании жесткого диска проблем не возникает, чего не скажешь о SSD. Во-первых, при нечастом включении питания у твердотельного диска банально начинается процесс стекания заряда; во-вторых, накопитель не использует внутренние алгоритмы увеличения своего ресурса (дефрагментация, TRIM и т.д.), что закономерно приводит к уменьшению ресурса. Как бы странно это ни звучало, но для увеличения ресурса твердотельного диска требуется его держать включенным достаточно продолжительное время.
5. Не устанавливайте SSD для использования в старых операционных системах
Старые операционные системы (Windows XP, Windows Vista, iOS до версии 10.6.6 и т.п.) не имеют поддержки части технологий, используемых в SSD (в частности, TRIM), что заметно уменьшает их производительность и ресурс. Устанавливать SSD следует в тех системах, где имеется их полноценная поддержка.
6. Файл подкачки не должен находиться на SSD
Файл подкачки в ОС семейства Windows — участок виртуальной памяти, сохраняемый на диске и используемый в случае нехватки физической оперативной памяти. Как правило, в этом файле находится то, что система использует наиболее часто, но при этом по каким-то причинам не может загрузить в ОЗУ. Казалось бы, почему нельзя его использовать на SSD? Можно, но при этом будьте готовы к резкому уменьшению ресурса диска по двум причинам: 1) объем файла подкачки достаточно велик и составляет обычно от 1 до 8 Гбайт; 2) данные в файле подкачки переписываются постоянно. Другими словами, операционная система постоянно переписывает определенные LBA-сектора SSD-диска, значительно уменьшая их ресурс. Наша практика показывает, что наиболее часто проблемы SSD начинаются именно с файла подкачки: в области его расположения появляются дефектные сектора (а это означает, что система саморемонта твердотельного диска уже ничего не может сделать с дефектами, появляющимися в результате лавинообразного уменьшения ресурса), что часто является «первой ласточкой» скоропостижной кончины устройства.
7. SSD необходимо охлаждать
Как ни странно, но SSD также нагреваются в процессе работы, как и другие компьютерные компоненты. Некоторые SSD греются довольно ощутимо. Как известно, нагрев не является для твердотельных дисков полезным, поэтому рекомендуется устанавливать их так, чтобы обеспечить максимальный отвод тепла.
8. Следите за обновлениями прошивки вашего SSD
Регулярно просматривайте сайт производителя вашего SSD, если там имеется актуальное обновление прошивки для вашего SSD, скачайте его и обновите прошивку. Очень часто обновление прошивки заметно увеличивает срок службы диска и его производительность, так как в обновлении учитываются обнаруженные в процессе эксплуатации накопителя ошибки и недочеты.
9. Перед обновлением прошивки SSD всегда резервируйте все данные
Обновление прошивки, как сказано выше — важный момент в сохранении ресурса и высокой производительности твердотельного диска. Однако следует учитывать, что при некоторых типах обновления (особенно это касается тех обновлений, которые запускаются в автоматическом режиме с загрузочной флешки) диск будет полностью стерт. При этом все данные с диска будут безвозвратно утеряны. Для того, чтобы такого не происходило, резервируйте данные с SSD перед тем, как обновлять его прошивку.
10. Установите программу для мониторинга состояния SSD от производителя
У всех основных производителей SSD имеется специализированная программа, предназначенная для мониторинга и обслуживания твердотельных накопителей: Intel Solid State Drive Toolbox, Samsung Magician, ADATA SSD Toolbox и др. Найти программу для Вашего SSD достаточно просто: зайдите на сайт производителя и следуйте инструкциям, имеющимся там, либо воспользуйтесь поиском в Интернете.
Что даст вам использование такого ПО? Прежде всего, вы сможете отслеживать состояние вашего SSD в режиме реального времени. Как правило, такие программы имеют систему предупреждения — как только накопитель подойдет к красной черте, программа об этом сообщит, и у вас будет время для резервирования информации. Кроме того, эти программы могут предложить вам необходимое обслуживание твердотельного диска: оптимизацию, обновление прошивки и т.п.
Заключение
Как видите, эксплуатация твердотельных дисков отличается от эксплуатации НЖМД. Если следовать данным выше советам, ваш SSD будет служить вам долго, и будет сохранять высокий уровень производительности.
Меня часто спрашивают: а чем так опасны эти запилы и царапины на поверхности жесткого диска? Вы же профессионал, наверняка есть технологии, позволяющие вычитать данные и с запиленных или зацарапанных поверхностей — почему вы так их не любите?
Да, конечно, технологии имеются. Но давайте будем объективны: из области запила или царапины данные нам уже не достать, так как в этом месте магнитная поверхность разрушена (конечно же, вместе с данными). Кроме того, вокруг самой царапины определенная область (в каждом индивидуальном случае — своего, индивидуального, размера) не может быть прочитана в силу термического разрушения намагниченности (когда поверхность «пилится», она сильно нагревается и проходит точку Кюри). Наконец, третье, и самое главное — при запиливании или зацарапывании образуется масса мелких частиц (стружка, опилки), которые начинают летать внутри гермоблока и могут находить себе «пристанище» не только на внутреннем фильтре, но также и на поверхностях диска, головках и т.д.
Не стоит забывать и о том, что вычитывание информации с поврежденных поверхностей — значительно более дорогостоящая процедура, чем чтение неповрежденных пластин, в силу применения тех самых технологий (первое) и в силу необходимости использования большего количества запчастей (второе). Накопитель должен быть обязательно очищен от опилок и стружки, которая появилась в нем в результате запиливания.
Об опилках и стружке я и хочу поговорить поподробнее, на одном весьма показательном примере.
Запиленный жесткий диск
Специалист по восстановлению информации с многолетним стажем, такой, как я, относительно легко определяет жесткий диск, в котором происходит процесс запиливания или зацарапывания поверхностей, по звуку. Передать это словами сложно — нужно иметь опыт. Скажем так, звук жесткого диска, который начал запиливаться, начинает разительно отличаться от нормального в сторону шипений, свистов и частых ударов, сливающихся в резонирующие вибрации.
Такой накопитель поступил к нам на днях. При малейшем подозрении на запиливание или зацарапывание накопитель подвергается тщательному осмотру — особенно его блок магнитных головок. Осмотр выявил типичную картину быстро прогрессирующих повреждений.
Нижняя головка (head 0)
Как правило, запиливание диска начинается с одной поверхности, и затем, по мере накопления внутри гермозоны свободно перемещающихся частиц, перекидывается на другие. По статистике, этот процесс чаще начинается или с верхней, или с нижней головки — просто потому, что и та, и другая ограничены с одной стороны (верхняя — крышкой гермоблока, нижняя — его дном) — при соударении с таким ограничителем шансы головки на разрушение гораздо больше, чем при соударении расположенных друг напротив друга головок.
В нашем случае все началось с нижней головки. Образовалось два концентрических запила — первый в зоне парковки, второй — в служебной зоне. Головка, которая работала с этой поверхностью, является самой грязной. Опилками покрыта вся ее поверхность, включая слайдер и кронштейн. Пазы слайдера ими просто забиты.
Такие загрязнения очень опасны, так как при работе головка парит над поверхностью на расстоянии в несколько десятков или сотен нанометров — размер опилок значительно больше, а значит, контакт головки и поверхности (через частицы опилок) неизбежен, что обязательно приведет к увеличению разрушений.
Головка 1
Следующая в пакете головка находится с другой стороны магнитной поверхности; это головка 1. Разрушения по ее поверхности намного меньше и имеют явно сгенерированную проблемами по головке 0 природу.
Нижняя поверхность, когда по ней начались разрушения, стала активно продуцировать опилки и стружку; большая часть этих «материалов» оставалась на неисправной поверхности и оседала на ее головке, но вскоре, после того, как объем выделяемых нижней поверхностью частиц превысил критическое значение, они начали распространяться внутри гермоблока. Часть их оседала на фильтре гермозоны, другая часть продолжала «путешествовать» внутри, оседая на головках, поверхностях и стенках гермозоны. По простой теории вероятности, чем ближе к разрушениям расположен объект, тем больше шанс того, что продукты разрушения покроют именно его; именно по этой причине на головке 1, самой близкой к нижней головке пакета, опилок больше, чем на других, расположенных дальше, головках.
Головка 2
Расположенная над головкой 1, головка 2 — вторая в пакете сверху и третья снизу. Она находится в одной пазухе с головкой 1 и, по этой причине, должна иметь примерно одинаковые с ней разрушения. В действительности ее разрушения несколько больше.
Прежде всего, бросается в глаза пучок стружки, имеющийся на этой головке. Кроме того, хорошо видны скопления опилок в углублениях слайдера. Основание слайдера в его вершине относительно чистое (относительно предыдущей головки, конечно).
Стружка — это первый признак зарождающегося запила. Головка срезает с поверхности при соударении длинные ленты лубриканта; эта стружка скапливается в той части головки, которая соприкасалась с пластиной. Опилки образуются, когда эта стружка попадает в промежуток между слайдером и поверхностью; здесь стружка измельчается по принципу абразива, и разлетается отсюда по всему гермоблоку. Также, когда слайдер царапает уже те слои, которые находятся под лубрикантом, он выбивает из них опилки.
Головка 3 (верхняя)
Головка 3 — самая верхняя в пакете. До нее разрушительное воздействие запила должно дойти в последнюю очередь — собственно, так оно и случилось. Слайдер и кронштейн головки чистые от опилок, но имеется пучок стружки. Верхняя поверхность диска не имеет повреждений, следовательно, эта стружка прилетела сюда снизу, с других головок.
Очевидно, что разрушение третьей головки едва началось, поверхность пока еще чистая, но если бы диск продолжал работать, разрушение этой поверхности было бы вопросом времени. Весьма небольшого времени.
Заключение
Что можно сказать в заключение? Бывает, что пользователь, сам того не зная, делает восстановление информации невозможным. Описанный выше случай — один из таких.
Диск вначале начал себя странно вести, срывался с рекалибровки, подстукивал и исчезал из системы. Казалось бы — самое время обратиться к специалисту, но хозяин устройства решил иначе. Первое, что он сделал — это подключение диска через другие разъемы (как питания, так и интерфейса). Это не помогло. После этого была запущена утилита проверки диска (Windows CheckDisk), которая, конечно же, начала свою работу — но на физически неисправном диске завершить ее она не могла, циклично обращаясь в адреса, которые не могли быть прочитаны. Как результат — полуживой диск быстро исчерпал остаточный ресурс, нижняя головка упала на поверхность и начала запиливание. Ну а дальше, по мере накопления внутри гермозоны «пиломатериалов», повредились и остальные поверхности.
Вывод из той печальной истории достаточно прост. Если вы видите, что накопитель ведет себя не так, как обычно; если вы слышите из накопителя незнакомые звуки, которых не было раньше — это повод обратиться к специалисту — как минимум позвонить и поинтересоваться, что может означать текущее поведение диска. Это будет бесплатно и убережет вас от потери информации.
Со 2-го по 8-е февраля 2020 г. наш офис в г. Бишкек будет закрыт, мы отбываем в Европу на очередной семинар по восстановлению информации, который будет происходить в офисе одного из наших партнеров.
Во время нашего отсутствия Вы можете связаться с нами по электронной почте, WhatsApp, Telegram или Viber.
Когда-то давно (относительно, конечно) в индустрии производства накопителей на жестких магнитных дисках настал переломный момент: для того, чтобы увеличить емкость выпускаемых дисков, производители перешли от параллельной магнитной записи к записи перпендикулярной. Технология появилась 12 лет назад и ее единственной задачей было продлить век жесткого диска, сделать его конкурентноспособным за счет увеличения емкости и уменьшения цены. Надо сказать, что с задачей технология справилась на славу: емкость жестких дисков за эти годы выросла почти в 10 раз, а цена упала до смешного: за 1 Тбайт дискового пространства нынче просят меньше 50 долларов США.
Однако и технологии NAND, на которых строятся твердотельные диски, не стояли на месте. Появились ёмкие SSD (100 Тбайт) с очень высокой производительностью. Жесткие диски оказались позади аж по целым двум показателям: по емкости (потолок того, что можно сейчас купить на рынке — 18 Тбайт; производители обещают в скором времени диски емкостью 20 Тбайт, но по сравнению со 100 Тбайт это звучит, мягко говоря, не очень оптимистично) и по производительности (современный жесткий диск ограничен пропускной способностью интерфейса SATA или SAS, тогда как твердотельные диски последних поколений работают на скоростях шины PCI Express).
Единственный (и, надо сказать, пока еще определяющий выбор покупателя) плюс жестких дисков — их цена. Накопитель HDD на 1 Тбайт стоит в 3 — 5 раз дешевле твердотельного диска той же емкости, ну а повышение емкости SSD кратно одному Тбайту повышает его цену в некоторых случаях на порядок.
За то время, что развивалась технология перпендикулярной записи, ее возможности были практически исчерпаны, и перед производителем встала новая задача: как продолжать наращивать емкость? Для этого существует три пути: уменьшить толщину магнитных пластин и, как следствие, сделать возможным установить их в гермоблок жесткого диска больше (при этом по очевидным причинам страдает надежность); уменьшить величину записываемого участка (увеличить плотность на треке) и сделать возможным записать больше данных на трек (развиваются две технологии — MAMR и HAMR); изменить метод записи для более плотного расположения непосредственно треков. Вот об этом, последнем, пути увеличения емкости мы и поговорим.
Производители ведут разработки, естественно, во всех направлениях. Одним из революционных изобретений последних лет стала технология SMR — Shingled Magnetic Recording, черепичная магнитная запись. Про нее эта статья.
Что такое SMR
Черепичная запись — принцип организации записи треков так, чтобы они частично перекрывались. Соответственно, упаковка треков в этом случае максимальная — фактически они лежат так плотно, что головка чтения-записи уже не может работать с каким-то одним треком, ей приходится работать сразу с несколькими. Это заметно увеличивает скорость чтения и записи (пишем-то сразу несколько треков, как и читаем), но только в том случае, если запись или чтение производится последовательно. Если нам нужно работать с большим количеством мелких файлов, а тем более — начать перезапись данных внутри уже имеющихся (например, удалить один маленький файл и записать на его место другой), скорость записи и чтения может проваливаться всерьез и надолго — вплоть до значений, близких к единичным IOPS на несколько минут.
На рисунках выше мы показали разницу между PMR (причем не важно, параллельной или перпендикулярной) и SMR записью.
Как видим, писать-читать SMR-головки могут только порциями треков, причем довольно солидными, на ширину головки. Эти порции треков называются лентами (ленты могут быть и шире однократного прохода головки, но всегда кратны ему). Если старый добрый жесткий диск с PMR-записью оперировал треками, то новый, с записью SMR, оперирует уже лентами (хотя треками, естественно, оперировать он тоже умеет — но об этом ниже).
Как работает SMR-диск
Давайте представим, как это работает. Пользователь решил записать на SMR-диск какой-то файл. Система передала его на интерфейс, из которого он загрузился в буфер диска. Здесь уже логика жесткого диска определила, на какую ленту (или на какие ленты) этот файл положить. Если лента до этого была пустая — прекрасно, значит просто кладем туда данные, и дело в шляпе. А вот если там уже что-то лежало, то диску предстоит целый набор нетривиальных действий: считать то, что уже лежит на ленте; загрузить считанное в буфер; объединить с тем, что добавляется на ленту; положить весь кусок (старое и новое) туда, куда требуется. Если же укладываются не последовательно большие порции данных, то процесс может реально занимать немало времени — именно поэтому у SMR-дисков большой объем буферного ОЗУ. Хоть как-то процесс ускорить.
При последовательной записи картина обратная. На скриншоте ниже показана запись 2 Тбайт данных на SMR-диск с интерфейсом USB 3.0 производства Western Digital емкостью 4 Тбайт. Как видим, скорость весьма приличная, хотя и не максимальная. Если бы пересылались большие файлы (в нашем примере идет передача огромного количества фотографий), скорость записи была бы еще больше.
Возникает вопрос: а как тогда работает такой диск, если требуется многократная перезапись небольших файлов в разных местах диска, ведь получается, что диску предстоит перелопатить кучу лент и это, естественно, займет немало времени?
Да, это сложная задача, с которой программисты прошивок SMR-дисков постарались справиться двумя способами. Первый — это наличие у диска стандартных PMR-областей, а второй — введение в микропрограмму фоновых процессов реорганизации лент, сходных с обычной дефрагментацией (собственно, в микропрограмме она так и называется — фоновая дефрагментация).
PMR-области используются в тех случаях, когда буферное ОЗУ переполняется, и требуется быстро освободить его под новые очереди задач; также эти области используются для процессов фоновой дефрагментации.
Фоновая дефрагментация: корень всех зол или благо?
Теперь немного подробнее о самой дефрагментации. В те моменты, когда SMR-диск не имеет задач от операционной системы, микропрограмма автоматически запускает процессы реорганизации лент. Диск сканирует ленты, определяет, где данные следует перенести для оптимизации скорости чтения, и производит перенос: считывается вся лента (или несколько лент), выкладывается в буфер (и дублируется на другой части диска, в SMR- или PMR-области), затем данные переставляются в нужном порядке, лишнее удаляется, и лента (или ленты) кладется обратно. И так в цикле, пока не будет реорганизован весь массив данных.
Соответственно, чем больше на диске данных (и чем больше их было записано недавно и, соответственно, беспорядочно), тем больше диску требуется времени на фоновую дефрагментацию. Поскольку довольно часто сейчас SMR-диски используются во внешних накопителях, может возникнуть ситуация, когда ваш внешний диск начинает жутко «тормозить». Если при этом он не издает посторонних звуков, не был замечен в падениях или ударах и является относительно свежекупленным, мы рекомендуем подождать. Почти наверняка в нем идут фоновые процессы реорганизации информации, и через некоторое время диск завершит их и перейдет в нормальный режим работы. Если же вы будете пытаться в это время записать в него новые данные, то это просто приведет к значительной потере времени: данные вы, конечно, запишете. Но заметно дольше, чем могли бы.
Логика работы SMR-дисков. Двойной транслятор, шифрование и TRIM
Логика SMR-диска устроена по-другому, не как PMR-диск. Если в стандартных PMR-дисках имеется только одна система трансляции (физическая адресация сектор — трек — головка в логическую адресацию LBA), то у SMR-дисков систем трансляции две. Это классический транслятор «сектор — трек -головка в LBA» и новый транслятор «сектор — трек — головка в ленте», причем оба этих транслятора взаимосвязаны. Потеря любого из них приведет к полной потере данных (на этом, кстати, построены технологии «быстрого стирания» SMR-дисков — обнуляем один из трансляторов и все, данных нет). Восстановление будет возможно лишь в том случае, если получится восстановить утерянный транслятор. Это уже задача для компаний по восстановлению информации, на текущий момент — достаточно сложная и дорогостоящая.
Кроме того, не стоит забывать и про шифрование. Оно уже давно и прочно обосновалось в устройствах хранения информации — ну а в SMR-дисках его использование время от времени преподносит пользователям своеобразные и далеко не всегда приятные сюрпризы.
Третья особенность SMR-дисков — TRIM. Гораздо проще и быстрее не перестраивать структуру лент, если это не требуется, а менять транслятор: удалили данные — ленты помечаются как пустые, и, соответственно, при запросе данных возвращают заполненные нулями сектора. Это, с одной стороны, удобно. А с другой — даже простой логический заказ (удаленные данные) после отработки TRIM может оказаться уже сложным, с необходимостью поднимать транслятор диска и извлекать данные из помеченных как очищенные лент. Поэтому прежде чем удалять информацию с SMR-диска — убедитесь, что эти данные вам больше не нужны. Иначе можно серьезно пострадать.
И как все это использовать?
Вполне закономерный вопрос, между прочим. Если вы дочитали до этого места, то уже поняли: SMR-диски очевидно лучше использовать под определенные задачи — по крайней мере, пока технология не обкатается и не будут решены описанные выше сложности. Ведь не спроста производители вдруг начали делить диски по типу использования: Survellance (для систем видеонаблюдения, то есть — для непрерывной потоковой записи), NAS (для дисковых массивов, то есть — для постоянной случайной записи и чтения), Gaming (для игр, то есть — для быстрого чтения больших объемов данных и предчтения их в буфер), Computing (для обычных персональных компьютеров, то есть — для стандартного повседневного использования).
Выбирая диск, обращайте внимание на его назначение, и покупайте именно такой, который максимально отвечает планируемому его использованию. Микропрограммы и физическая организация дисков могут оказаться (и обычно оказываются) оптимизированы под целевое использование, и диск для систем видеонаблюдения может оказаться совсем не подходящим для использования в бытовом компьютере.
В целом можно констатировать, что на текущий момент наиболее оптимально использовать SMR-диски в задачах, где производится последовательная запись и стирание данных — особенно больших объемов. С такими задачами в силу механизмов функционирования эти диски будут справляться намного лучше и быстрее PMR-дисков. Например, диски в системах видеонаблюдения, архивирования данных (системы резервного копирования, которые записывают резервную копию в виде одного файла), внешние накопители для хранения информации, и т.п. SMR-диски нежелательно использовать под установку операционной системы, под работу ПО (особенно, связанную с многочисленными постоянными переносами данных — например, в системах видеомонтажа или верстки документов типографского качества) и пр. Для этих задач мы рекомендуем или SSD, или HDD в традиционном PMR-исполнении.